É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
A regeneração muscular esquelética é impulsionada por células-tronco musculares residentes em tecidos, que são prejudicadas em muitas doenças musculares, como distrofia muscular, e isso resulta na incapacidade do músculo de se regenerar. Aqui, descrevemos um protocolo que permite o exame da regeneração muscular em modelos de zebrafish de doença muscular.
O músculo esquelético tem uma notável capacidade de se regenerar após a lesão, que é impulsionada por células-tronco musculares residentes de tecido obrigatório. Após a lesão, a célula-tronco muscular é ativada e sofre proliferação celular para gerar um pool de míobios, que posteriormente se diferenciam para formar novas fibras musculares. Em muitas condições de perda muscular, incluindo distrofia muscular e envelhecimento, esse processo é prejudicado, resultando na incapacidade do músculo de se regenerar. O processo de regeneração muscular em zebrafish é altamente conservado com sistemas de mamíferos fornecendo um excelente sistema para estudar a função e a regeneração das células-tronco musculares, em condições de perda muscular, como distrofia muscular. Aqui, apresentamos um método para examinar a regeneração muscular em modelos de zebrafish de doença muscular. O primeiro passo envolve o uso de uma plataforma de genotipagem que permite a determinação do genótipo das larvas antes de provocar uma lesão. Tendo determinado o genótipo, o músculo é ferido usando uma facada de agulha, seguindo a qual a microscopia de luz polarizadora é usada para determinar a extensão da regeneração muscular. Por isso, fornecemos um gasoduto de alta produtividade que permite o exame da regeneração muscular em modelos de zebrafish de doença muscular.
O músculo esquelético é responsável por 30-50% da massa corporal humana, e não é apenas indispensável para a locomoção, mas também serve como um órgão metabólico e de armazenamento crítico1. Apesar de ser pós-metótico, o músculo esquelético é altamente dinâmico e mantém uma tremenda capacidade regenerativa após lesão. Isso é atribuído à presença de células-tronco residentes em tecidos (também chamadas de células satélites), localizadas sob a lamina basal de miofibers e marcadas pelos fatores de transcrição emparelhados da proteína da caixa 7 (pax7) e/ou proteína de caixa emparelhada 3 (pax3),entre outros2,3. Após a lesão, a célula satélite é ativada e sofre proliferação celular para gerar um pool de míobios, que posteriormente se diferenciam para formar novas fibras musculares. A cascata altamente conservada de sinais pró-regenerativos que regulam a ativação celular por satélite e o reparo muscular robusto é afetada em várias condições, como miopatias e envelhecimento homeostático4,5.
Um grupo tão diversificado de miopatias é a distrofia muscular, caracterizada pelo perda muscular progressiva e degeneração6. Essas doenças são consequência de mutações genéticas em proteínas-chave, incluindo distrofina e laminina-α2 (LAMA2), responsáveis pela fixação das fibras musculares à matriz extracelular7,8. Dado que as proteínas implicadas na distrofia muscular desempenham um papel central na manutenção da estrutura muscular, por muitos anos acreditava-se que uma falha nesse processo era o mecanismo responsável pela patogênese da doença9. No entanto, estudos recentes identificaram defeitos na regulação de células-tronco musculares e subsequente comprometimento na regeneração muscular como segunda base possível para a patologia muscular observada na distrofia muscular10,11. Como tal, mais estudos são necessários para investigar como um comprometimento na função de células-tronco musculares e elementos de nicho associados contribui para a distrofia muscular.
Na última década, o zebrafish (Danio rerio) emergiu como um importante modelo vertebrado para modelagem dedoenças 12. Isso é atribuído ao rápido desenvolvimento externo do embrião de zebrafish, aliado à sua clareza óptica, que permite a visualização direta da formação muscular, crescimento e função. Além disso, não só o desenvolvimento e estrutura do músculo altamente conservado em zebrafish, eles também apresentam um processo altamente conservado de regeneração muscular13. Consequentemente, o zebrafish representa um excelente sistema para estudar a trajetória das doenças musculares e explorar como a regeneração muscular é afetada nele. Para isso, desenvolvemos um método que permite o estudo oportuno da regeneração muscular esquelética em modelos de zebrafish de doença muscular. Este oleoduto de alto rendimento envolve um método para genótipo embriões vivos14, após o qual uma lesão agulha-facada é realizada e a extensão da regeneração muscular é imageada usando microscopia de luz polarizadora. A utilização desta técnica revelará, portanto, a capacidade regenerativa do músculo em modelos de zebrafish de doença muscular.
A manutenção de zebrafish foi realizada de acordo com os procedimentos operacionais padrão aprovados pelo Comitê de Ética Animal da Universidade monash sob licença de colônia de reprodução ERM14481.
1. Determinação do genótipo de embriões vivos usando uma plataforma de genotipagem de embriões.
2. Realizar lesão muscular usando uma facada de agulha
3. Imagem de lesão muscular e recuperação
4. Quantificação da regeneração muscular
A capacidade de quantificar a birefringência do músculo esquelético fornece um método não invasivo, mas altamente reprodutível, para examinar e comparar níveis de dano muscular, e examinar a regeneração muscular in vivo. A birefringência resulta da difração da luz polarizada através da matriz pseudo-cristalina dos sarcomeres musculares15, e após lesão ou dano ao músculo, é evidente uma redução na birefringência. Da mesma forma, a ativa?...
A regeneração muscular esquelética é impulsionada por células-tronco musculares residentes em tecidos obrigatórios, cuja função é alterada em muitas doenças musculares, como distrofia muscular, impedindo posteriormente o processo de regeneração muscular. Aqui, descrevemos um protocolo de alta produtividade para examinar a regeneração muscular em modelos de zebrafish vivos de doença muscular. O primeiro passo do gasoduto utiliza uma plataforma de genotipagem de embriões14, que é um...
Os autores não têm nada a revelar.
Gostaríamos de agradecer ao Dr. Alex Fulcher e à Monash Micro Imaging pela assistência com a manutenção e configuração dos microscópios. O Instituto Australiano de Medicina Regenerativa é apoiado por subsídios do Governo do Estado de Victoria e do Governo Australiano. Este trabalho foi financiado por uma concessão de projeto da Associação de Distrofia Muscular (EUA) para P.D.C (628882).
Name | Company | Catalog Number | Comments |
24 well plates | Thermo Fischer | 142475 | |
30 gauge needles | Terumo | NN-3013R | |
90 mm Petri Dishes | Pacific Laboratory Products PT | S9014S20 | |
DNA extraction chips | wFluidx | ZEG chips | |
Embryo genotyping platform | wFluidx | ZEG base unit | Zebrafish Embryo Genotyper |
Glass pipette | Hirschmann | 9260101 | |
Glass plate dish | WPI | FD35-100 | Commonly referred to as FluoroDish |
Incubator | Thermoline Scientific | TEI-43L | |
Plastic pipette | Livingstone | PTP03-01 | |
Polarizing microscope | Abrio | N/A |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados