É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
* Estes autores contribuíram igualmente
O presente protocolo fornece um procedimento passo-a-passo para limpeza óptica rápida e simultânea, marcação multi-redonda e reconstrução volumétrica 3D de dezenas de cortes cerebrais humanos post-mortem, combinando a técnica de transformação de tecido curto (SWITCH - H2O2 - Antigen Retrieval - 2,2'-thiodiethanol [TDE]) com imagens de microscopia de fluorescência de folha de luz em um protocolo de alto rendimento de rotina.
Apesar das inúmeras técnicas de clareamento que surgiram na última década, o processamento de cérebros humanos post-mortem continua sendo uma tarefa desafiadora devido às suas dimensões e complexidade, que tornam as imagens com resolução micrométrica particularmente difíceis. Este trabalho apresenta um protocolo para realizar a reconstrução de porções volumétricas do cérebro humano por meio do processamento simultâneo de dezenas de cortes com o protocolo de transformação tecidual SHORT (SWITCH - H2O2 - Antigen Retrieval - 2,2'-thiodiethanol [TDE]), que permite a limpeza, marcação e obtenção de imagens sequenciais das amostras com microscopia de fluorescência em folha de luz (LSFM). O SHORT proporciona rápida limpeza tecidual e multimarcação homogênea de cortes espessos com vários marcadores neuronais, permitindo a identificação de diferentes subpopulações neuronais tanto na substância branca quanto na cinzenta. Após a limpeza, as fatias são fotografadas via LSFM com resolução micrométrica e em múltiplos canais simultaneamente para uma rápida reconstrução 3D. Combinando SHORT com LSFM dentro de um protocolo de alto rendimento de rotina, é possível obter a reconstrução da citoarquitetura 3D de grandes áreas volumétricas em alta resolução em um curto espaço de tempo, permitindo assim uma caracterização estrutural abrangente do cérebro humano.
Analisar a organização molecular 3D e a citoarquitetura de grandes volumes do cérebro humano requer transparência óptica dos espécimes, conseguida através de protocolos com extenso tempo de processamento. Técnicas de clareamento óptico foram desenvolvidas para minimizar a heterogeneidade do índice de refração (IR) dentro dos tecidos, reduzindo o espalhamento de luz e aumentando a profundidade de penetração da luz para imagens de alta resolução 1,2,3,4,5. Os avanços atuais nos métodos de clareamento e marcação tecidual profunda permitem a obtenção volumétrica de órgãos e embriões de roedores intactos, utilizando técnicas de microscopia de ponta6,7,8,9,10,11,12.
No entanto, a reconstrução volumétrica 3D de grandes áreas do cérebro humano post-mortem ainda representa uma tarefa desafiadora em comparação com organismos modelo. A complexa composição biológica e as variáveis condições de fixação e armazenamento post-mortem podem comprometer a eficiência do clareamento tecidual, a profundidade de penetração de anticorpos e o reconhecimento de epítopos13,14,15,16,17,18,19. Além disso, a secção mecânica dos tecidos e a subsequente limpeza e marcação de cada corte ainda são necessárias para obter uma limpeza eficiente e marcação uniforme de grandes áreas cerebrais humanas, resultando em longos tempos de processamento e na necessidade de sofisticados equipamentos personalizados, em comparação com organismos modelo 15,20,21,22.
A técnica de transformação tecidual SWITCH - H2O2 - antigen Retrieval -TDE (SHORT) foi desenvolvida especificamente para analisar grandes volumes do cérebro humano18,23. Este método emprega a preservação estrutural tecidual do protocolo SWITCH11 e altas concentrações de hidrogênio peróxido para diminuir a autofluorescência tecidual, em combinação com a restauração de epítopos. O SHORT permite coloração uniforme de cortes cerebrais humanos com marcadores para diferentes subtipos neuronais, células gliais, vasculatura e fibras mielinizadas18,24. Seus resultados são compatíveis com a análise de proteínas de baixa e alta densidade. Os altos níveis de transparência resultantes e a marcação uniforme permitem a reconstrução volumétrica de cortes espessos com microscopia de fluorescência, em particular, para que equipamentos fotográficos de aquisição rápida possam ser utilizados 18,24,25,26,27.
Neste trabalho, descrevemos como a técnica de transformação de tecido SHORT pode ser usada para limpeza simultânea e marcação multi-redonda de dezenas de cortes cerebrais humanos fixados em formal. Quatro marcadores fluorescentes diferentes podem ser usados em conjunto, levando à identificação de diferentes subpopulações celulares. Após a limpeza, imagens volumétricas de alta resolução podem ser realizadas com microscopia de fluorescência. Neste trabalho, utilizou-se um LSFM invertido sob medida18,24,25,26,27, que permite rápida seccionagem óptica da amostra e rápida aquisição de múltiplos canais em paralelo. Com este protocolo de alto rendimento rotineiro, é possível obter uma caracterização celular e estrutural abrangente com resolução subcelular de grandes áreas do cérebro humano, como já demonstrado no mapeamento de toda uma área deBroca23.
Amostras de tecido humano fixadas em formalina foram fornecidas pelo Departamento de Neuropatologia do Serviço de Autópsia do Massachusetts General Hospital (MGH) (Boston, EUA). O consentimento por escrito foi obtido dos participantes saudáveis antes do óbito, seguindo os protocolos de coleta de tecidos aprovados pelo IRB do Comitê Institucional de Biossegurança de Parceiros (PIBC, protocolo 2003P001937). Os documentos de autorização são mantidos com os Serviços de Autópsia MGH em Boston, MA, Estados Unidos, e estão disponíveis mediante solicitação.
1. Incorporação de agarose e corte da amostra
2. Fixação tecidual
OBS: Todas as soluções utilizadas no protocolo a seguir são preparadas em grandes volumes, suficientes para processar todos os cortes de um mesmo bloco tecidual e minimizar a variabilidade técnica e reduzir o tempo para etapas individuais.
3. Inativação e compensação
NOTA: O glutaraldeído reativo nas amostras deve ser inativado por incubação com uma solução de inativação composta por 1x PBS pH 7,4, 4% p/v acetamida, 4% p/v glicina, pH 9,0. A solução pode ser armazenada a 4 °C por até 3 meses. Para remover os lipídios e tornar o tecido transparente, utilizamos a solução de clareamento composta por dodecil sulfato de sódio (SDS) 200 mM, sulfito de sódio 20 mM (Na2SO3) e ácido bórico 20 mM (H3BO3), pH 9,0. A solução deve ser armazenada em RT à medida que o SDS precipita a 4 °C. Todos os passos seguintes serão feitos em tubos preenchidos com a solução.
4. Imunomarcação
NOTA: Antes da etapa de marcação, é necessário remover o SDS residual, reduzir a autofluorescência e desmascarar os epítopos com uma solução de recuperação de antígeno consistindo de 10 mM Tris base, 1 mM EDTA e 0,05% v/v Tween 20, pH 9. O pH 9 da solução é otimizado para um processo de recuperação eficiente; Tris base atua como um agente tampão para manter um ambiente de pH estável; O EDTA, que é um agente quelante, aumenta a acessibilidade do antígeno. O detergente não iônico Tween 20 auxilia na melhora da permeabilidade do tecido. Esta solução pode ser armazenada a 4 °C. É importante notar que o peróxido de hidrogênio combinado com a etapa de recuperação do antígeno tem um efeito sinérgico na redução do sinal de autofluorescência, quebrando e/ou modificando os fluoróforos endógenos responsáveis pelo sinal de fundo inespecífico (como a lipofuscina).
5. Correspondência do índice de refração
NOTA: Para atingir um alto nível de transparência, é necessário homogeneizar o índice de refração tecidual. Aqui usamos 2,2'-tiodietanol (TDE) diluído em 1x PBS. As soluções TDE devem ser armazenadas em RT.
6. Montagem da amostra
NOTA: Para facilitar a montagem da amostra e a aquisição da imagem LSFM, usamos um porta-amostras selado sob medida (denominado "sanduíche"), que consiste em três partes: uma lâmina de microscópio, um espaçador e uma lamínula.
7. Decapagem
NOTA: A preservação estrutural e a acessibilidade aprimorada do epítopo do SHORT permitem a marcação multi-redonda de fatias, removendo os anticorpos e retendo as amostras com outros marcadores.
O protocolo aqui descrito permite o tratamento simultâneo de múltiplos cortes, variando em espessura de 100 μm a 500 μm, utilizando o método SHORT. Essa abordagem reduz significativamente o tempo total de processamento de todo o procedimento. Neste trabalho, fornecemos uma descrição abrangente de todo o pipeline (Figura 1) para processamento simultâneo de múltiplos cortes espessos do cérebro humano post-mortem e demonstramos o protocolo em 24 cortes de uma só vez (
Imagens de alta resolução e reconstrução 3D de grandes áreas cerebrais humanas requerem secção mecânica do tecido seguida de clareamento óptico e imunomarcação de cortes únicos. O protocolo aqui apresentado descreve como o método de transformação tecidual SHORT pode ser usado para processamento rápido e simultâneo de múltiplas seções espessas do cérebro humano para reconstrução cerebral 3D com resolução subcelular com LSFM.
Ao contrário de outras abordagens, com o mé...
Os autores declaram que a pesquisa foi conduzida na ausência de quaisquer relações comerciais ou financeiras que pudessem ser interpretadas como um potencial conflito de interesses.
Agradecemos a Bruce Fischl, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, Department of Radiology, por fornecer as amostras de cérebro humano analisadas neste estudo. Este projeto recebeu financiamento do Programa-Quadro de Investigação e Inovação Horizonte 2020 da União Europeia ao abrigo do acordo de subvenção n.º 654148 (Laserlab-Europe), do Programa-Quadro de Investigação e Inovação Horizonte 2020 da União Europeia ao abrigo do Acordo de Subvenção Específico n.º 785907 (Projeto Cérebro Humano SGA2) e n.º 945539 (Projeto Cérebro Humano SGA3), do Centro da Corporação Hospitalar Geral dos Institutos Nacionais de Saúde sob o número de prémio U01 MH117023, e do Ministério da Educação italiano no âmbito do Nó Italiano Euro-Bioimaging (infraestrutura de investigação ESFRI). Finalmente, esta pesquisa foi realizada com a contribuição da "Fondazione CR Firenze". O conteúdo deste trabalho é de responsabilidade exclusiva dos autores e não representa, necessariamente, a opinião oficial do National Institutes of Health. A Figura 1 foi criada com BioRender.com.
Name | Company | Catalog Number | Comments |
2,2'-thiodiethanol | Merck Life Science S.R.L. | 166782 | |
Acetamide >= 99.0% (GC) | Merck Life Science S.R.L. | 160 | |
Agarose High EEO | Merck Life Science S.R.L. | A9793 | |
Boric Acid | Merck Life Science S.R.L. | B7901 | |
Compressome VF-900-0Z Microtome | Precisionary | / | |
Coverslips | LaserOptex | / | customized |
Ethylenediaminetetraacetic acid disodium salt dihydrate | Merck Life Science S.R.L. | E5134 | |
Glutaraldehyde | Merck Life Science S.R.L. | G7651 | |
Glycine | Santa Cruz Biotechnology | SC_29096 | |
Hydrogen Peroxide 30% | Merck Life Science S.R.L. | ||
Incubator ISS-4075 | Lab companion | / | |
Light-sheet fluorescence microscopy (LSFM) | / | / | custom-made |
Loctite Attak | Henkel Italia srl | / | |
Microscope slides | Laborchimica | / | customized |
Phospate buffer saline tablet | Merck Life Science S.R.L. | P4417 | |
Picodent Twinsil | Picodent | 13005002 | out of production |
Potassium Hydrogen Phtalate | Merck Life Science S.R.L. | P1088 | |
Sodium Azide | Merck Life Science S.R.L. | S2002 | |
Sodium Dodecyl Sulfate | Merck Life Science S.R.L. | L3771 | |
Sodium Sulfite | Merck Life Science S.R.L. | S0505 | |
Spacers | Microlaser srl | customized | |
Sputum Containers (dishes with screw lids) | Paul Boettger GmbH & Co. KG | 07.061.2000 | |
Tris Base | PanReac AppliChem (ITW reagents) | A4577,0500 | |
Triton X-100 | Merck Life Science S.R.L. | T8787 | |
Tubes | Sarstedt | 62 547254 | |
Tween 20 | Merck Life Science S.R.L. | P9416 | |
Vibratome VT1000S | Leica Biosystem | / | |
Water bath | Memmert | WNB 7-45 | |
Antibodies and Dyes | |||
Alexa Fluor 488 AffiniPure Alpaca Anti-Rabbit IgG (H+L) | Jackson Immuno Reasearch | 611-545-215 | Dilution used, 1:200 |
Alexa Fluor 488 AffiniPure Bovine Anti-Goat IgG (H+L) | Jackson Immuno Reasearch | 805-545-180 | Dilution used, 1:200 |
Alexa Fluor 647 AffiniPure Alpaca Anti-Rabbit IgG (H+L) | Jackson Immuno Reasearch | 611-605-215 | Dilution used, 1:200 |
Anti-NeuN Antibody | Merck Life Science S.R.L. | ABN91 | Dilution used, 1:100 |
Anti-Parvalbumin antibody (PV) | Abcam | ab32895 | Dilution used, 1:200 |
Anti-Vimentin antibody [V9] - Cytoskeleton Marker (VIM) | Abcam | ab8069 | Dilution used, 1:200 |
Calretinin Polyclonal antibody | ProteinTech | 12278_1_AP | Dilution used, 1:200 |
DAPI | ThermoFisher | D3571 | Dilution used, 1:100 |
Donkey Anti-Mouse IgG H&L (Alexa Fluor 568) | Abcam | ab175700 | Dilution used, 1:200 |
Donkey Anti-Mouse IgG H&L (Alexa Fluor 647) | Abcam | ab150107 | Dilution used, 1:200 |
Donkey Anti-Rabbit IgG H&L (Alexa Fluor 568) | Abcam | ab175470 | Dilution used, 1:200 |
Donkey Anti-Rat IgG H&L (Alexa Fluor 568) preadsorbed | Abcam | ab175475 | Dilution used, 1:200 |
Goat Anti-Chicken IgY H&L (Alexa Fluor 488) | Abcam | ab150169 | Dilution used, 1:500 |
Goat Anti-Chicken IgY H&L (Alexa Fluor 568) | Abcam | ab175711 | Dilution used, 1:500 |
Goat Anti-Chicken IgY H&L (Alexa Fluor 647) | Abcam | ab150171 | Dilution used, 1:500 |
Goat Anti-Rabbit IgG H&L (Alexa Fluor 488) | Abcam | ab150077 | Dilution used, 1:200 |
Recombinant Alexa Fluor 488 Anti-GFAP antibody | Abcam | ab194324 | Dilution used, 1:200 |
Somatostatin Antibody YC7 | Santa Cruz Biotechnology | sc-47706 | Dilution used, 1:200 |
Vasoactive intestinal peptide (VIP) | ProteinTech | 16233-1-AP | Dilution used, 1:200 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoExplore Mais Artigos
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados