JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Preparation of Giant Vesicles Exhibiting Visible-light-induced Morphological Changes

Published: Not Published

1Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 2Department of Applied Physics, School of Applied Science, National Defense Academy of Japan, 3Department of Materials Science and Technology, Faculty of Engineering, Niigata University

Abstract

We describe the preparation of giant vesicles that incorporate a photoresponsive ruthenium complex having two alkyl chains. The vesicles exhibited morphological changes when exposed to visible light. The ruthenium complex proximal-[Ru(L1)(L2)OH2](NO3)2, proximal-2 (L1 is 4'-decyloxy-2,2';6',2"-terpyridine, L2 is 2-(2'-(6'-decyloxy)-pyridyl)quinoline) was prepared by a thermal reaction of Ru(L1)Cl3 and L2, followed by removal of a chloride ligand. In an aqueous solution and vesicle dispersions, proximal-2 was reversibly photoisomerized to the distal isomer. Giant vesicles containing proximal-2 were prepared by hydration of phospholipid films containing proximal-2 in the dark at 80 °C. Giant vesicles were frequently found in the dispersions prepared from DOPC/proximal-2 rather than from DPPC/proximal-2 (DOPC is 1,2-dioleoyl-sn-glycero-3-phosphocholine, DPPC is 1,2-dipalmitoyl -sn-glycero-3-phosphocholine). The ratio of proximal-2 and DOPC in the vesicle preparation was varied from 5:100 to 20:100. The light-induced morphological changes were observed for proximal-2/DOPC in the presence of Na2SO4. However, they were highly suppressed in the presence of NaOH. Incubation of light-exposed vesicles at 45 °C in the dark induced reverse morphological changes. Morphological changes were observed under fluorescence microscopy using 635 nm (red) light. Rhodamine-DOPC [rhodamine-DOPC: 1,2-dioleoyl-sn-glycero-3-phos-phoethanolamine-N-(lissamine rhodamine B sulfonyl)] was used to fluorescently label the vesicles.

Explore More Videos

Chemistry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved