In integrated circuit technology, a capacitance multiplier is often utilized to produce a larger capacitance value when a small physical capacitance falls short. This is achieved by a circuit that multiplies capacitance values by a factor of up to 1000, such that a 10-pF capacitor can replicate the performance of a 100-nF capacitor.

The circuit illustrated in Figure 1 below incorporates two op-amps, with the first operating as a voltage follower and the second acting as an inverting amplifier.

Figure1

Figure 1: Capacitance Multiplier

The voltage follower functions to isolate the capacitance created by the circuit from the loading incurred by the inverting amplifier. Since no current enters the op amp's input terminals, the feedback capacitor carries the input current.

By applying Kirchhoff's Current Law (KCL), a relation between input and output voltage with respect to resistances can be established, which can be further substituted into the current expression. Rearranging the expressions aids in determining the input impedance. By selecting appropriate resistance values, an effective capacitance can be generated between the input terminal and ground that is a multiple of the physical capacitance.

To prevent op-amps from saturating, the effective capacitance must be limited by the inverted output voltage. As the capacitance multiplication increases, the maximum allowable input voltage must decrease. Capacitance multiplier circuits such as this one provide an efficient solution for generating larger capacitances without increasing the physical capacitance.

Теги
Capacitance MultiplierIntegrated CircuitOp ampsVoltage FollowerInverting AmplifierKirchhoff s Current LawInput ImpedanceEffective CapacitanceCapacitance MultiplicationCircuit Design

Из главы 6:

article

Now Playing

6.16 : Design Example: Capacitance Multiplier Circuit

AC Circuit Analysis

488 Просмотры

article

6.1 : Синусоидальные источники

AC Circuit Analysis

248 Просмотры

article

6.2 : Графическое и аналитическое представление синусоид

AC Circuit Analysis

276 Просмотры

article

6.3 : Фазоры

AC Circuit Analysis

318 Просмотры

article

6.4 : Фазорная арифметика

AC Circuit Analysis

121 Просмотры

article

6.5 : Векторные взаимосвязи для элементов цепи

AC Circuit Analysis

328 Просмотры

article

6.6 : Законы Кирхгофа с использованием фазоров

AC Circuit Analysis

219 Просмотры

article

6.7 : Импедансы и допуск

AC Circuit Analysis

392 Просмотры

article

6.8 : Комбинация импеданса

AC Circuit Analysis

191 Просмотры

article

6.9 : Анализ узлов для цепей переменного тока

AC Circuit Analysis

188 Просмотры

article

6.10 : Анализ сетки для цепей переменного тока

AC Circuit Analysis

236 Просмотры

article

6.11 : Преобразование источника для цепей переменного тока

AC Circuit Analysis

330 Просмотры

article

6.12 : Эквивалентные цепи #233venin

AC Circuit Analysis

117 Просмотры

article

6.13 : Эквивалентные схемы Norton

AC Circuit Analysis

221 Просмотры

article

6.14 : Теорема о суперпозиции для цепей переменного тока

AC Circuit Analysis

451 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены