The human body employs intricate mechanisms to counteract changes in blood pH, preventing conditions like acidosis (pH < 7.35) and alkalosis (pH > 7.45). These compensatory responses aim to restore normal arterial blood pH by engaging respiratory or renal systems, depending on the source of the imbalance.

Respiratory Compensation
This mechanism addresses metabolic-induced pH imbalances by adjusting breathing rates. Respiratory compensation begins within minutes of detecting a pH disturbance and reaches peak efficacy within hours.

  1. In metabolic acidosis (low blood pH), hyperventilation occurs, increasing the rate of carbon dioxide (CO2) exhalation. Reduced CO2levels decrease the formation of carbonic acid (H2CO3), leading to fewer hydrogen ions (H⁺) and raising blood pH toward normal.
  2. In metabolic alkalosis (high blood pH), the body responds with hypoventilation—slower, shallower breathing. This allows CO2to accumulate in the blood, increasing carbonic acid formation and H⁺ release and lowering pH toward normal levels.

Renal Compensation
The kidneys take over with renal compensation when the pH imbalance originates from respiratory causes. This process involves the kidneys modulating the secretion and reabsorption of H⁺ and bicarbonate ions (HCO3⁻) in the tubules. Although renal responses begin within minutes, they take several days to reach maximum effectiveness.

  1. In respiratory acidosis (low pH due to excess CO2), the kidneys retain bicarbonate ions, which buffer excess H⁺ and help form carbonic acid.
  2. In respiratory alkalosis (high pH due to low CO2), the kidneys excrete bicarbonate ions while reducing H⁺ secretion. This decreases blood bicarbonate levels, promotes carbonic acid dissociation, releases more H+, and lowers pH.

These compensatory mechanisms highlight the body’s ability to dynamically regulate blood pH, ensuring stability for critical physiological processes. While respiratory compensation is faster, renal compensation provides a more robust and long-term solution to acid-base imbalances.

Из главы 30:

article

Now Playing

30.19 : Compensation Mechanisms

Fluid, Electrolyte, and Acid-Base Balance

32 Просмотры

article

30.1 : Содержание воды в организме и отсеки для жидкости

Fluid, Electrolyte, and Acid-Base Balance

197 Просмотры

article

30.2 : Состав жидкостей организма

Fluid, Electrolyte, and Acid-Base Balance

148 Просмотры

article

30.3 : Перемещение жидкости между отсеками

Fluid, Electrolyte, and Acid-Base Balance

167 Просмотры

article

30.4 : Регулирование забора воды

Fluid, Electrolyte, and Acid-Base Balance

161 Просмотры

article

30.5 : Регулирование подачи воды

Fluid, Electrolyte, and Acid-Base Balance

109 Просмотры

article

30.6 : Нарушение водного баланса

Fluid, Electrolyte, and Acid-Base Balance

126 Просмотры

article

30.7 : Роль электролитов: натрия и калия

Fluid, Electrolyte, and Acid-Base Balance

51 Просмотры

article

30.8 : Роль электролитов: хлорида и бикарбоната

Fluid, Electrolyte, and Acid-Base Balance

31 Просмотры

article

30.9 : Роль электролитов: кальция и фосфата

Fluid, Electrolyte, and Acid-Base Balance

41 Просмотры

article

30.10 : Регулирование содержания натрия и калия

Fluid, Electrolyte, and Acid-Base Balance

43 Просмотры

article

30.11 : Кислотно-щелочной баланс

Fluid, Electrolyte, and Acid-Base Balance

113 Просмотры

article

30.12 : Буферные системы в организме

Fluid, Electrolyte, and Acid-Base Balance

139 Просмотры

article

30.13 : Белковые буферы в плазме крови и клетках

Fluid, Electrolyte, and Acid-Base Balance

135 Просмотры

article

30.14 : Фосфатный буфер

Fluid, Electrolyte, and Acid-Base Balance

108 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены