Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

Недавно разработанный микроструктурированный чип с окнами оксида графена изготовлен с применением методов микроэлектромеханической системы, что позволяет эффективно и высокопроизводительно криогенную электронную микроскопию визуализировать различные биомолекулы и наноматериалы.

Аннотация

Основным ограничением для эффективного и высокопроизводительного структурного анализа биомолекул с использованием криогенной электронной микроскопии (крио-ЭМ) является сложность подготовки крио-ЭМ образцов с контролируемой толщиной льда на наноуровне. Микросхема на основе кремния (Si), которая имеет регулярный массив микроотверстей с окном оксида графена (GO), узорчатым на пленке нитрида кремния с контролируемой толщиной (SixNy), была разработана с применением методов микроэлектромеханической системы (MEMS). УФ-фотолитография, химическое осаждение из паровой фазы, мокрое и сухое травление тонкой пленки, капельное литье 2D нанолистовых материалов использовались для массового производства микроструктурированных чипов с окнами GO. Глубина микроотверстей регулируется для контроля толщины льда по требованию, в зависимости от размера образца для крио-ЭМ-анализа. Благоприятное сродство GO к биомолекулам концентрирует биомолекулы, представляющие интерес, в микро-отверстии во время крио-ЭМ пробоподготовки. Микроструктурированный чип с окнами GO обеспечивает высокопроизводительную крио-ЭМ визуализацию различных биологических молекул, а также неорганических наноматериалов.

Введение

Криогенная электронная микроскопия (крио-ЭМ) была разработана для разрешения трехмерной (3D) структуры белков в их родном состоянии 1,2,3,4. Метод включает фиксацию белков в тонком слое (10-100 нм) стекловидного льда и получение проекционных изображений случайно ориентированных белков с помощью просвечивающего электронного микроскопа (ТЭМ), при этом образец поддерживается при температуре жидкого азота. Тысячи и миллионы проекционных изображений получены и использованы для реконструкции 3D-структуры белка с помощью вычислительных алгоритмов

протокол

1. Изготовление микроструктурированного чипа с окнами GO (рисунок 1)

  1. Нанесите нитрид кремния.
    1. Нанесите низконапряженный нитрид кремния (SixNy) на обе стороны кремниевой пластины (диаметр 4 дюйма и толщина 100 мкм) с использованием химического осаждения из паровой фазы низкого давления (LPCVD) при 830 °C и давлении 150 мТорр, под потоком 170 sccm дихлорсилана (SiH2Cl2, DCS) и 38 sccm аммиака (NH3).
    2. Используя скорость осаждения ~30 Å/мин, контролируйте толщину SixNy в пределах 25-100 нм, изменяя время ос....

Результаты

Микроструктурированный чип с окнами GO был изготовлен путем изготовления MEMS и передачи нанолиста 2D GO. Чипы для микроструктурирования производились серийно, причем около 500 чипов производились из одной пластины 4 (рисунок 1B и рисунок 2A, B). Констру?.......

Обсуждение

Здесь представлены процессы микрофабрикации для производства микроструктурированных чипов с окнами GO. Изготовленный микроструктурированный чип предназначен для регулирования толщины стекловидного слоя льда путем контроля глубины микроотверстия с помощью окон GO в зависимости от р?.......

Раскрытие информации

У авторов нет конфликта интересов.

Благодарности

M.-H.K., S.K., M.L. и J.P. признают финансовую поддержку со стороны Института фундаментальных наук (грант No. IBS-R006-D1). S.K., M.L. и J.P. признают финансовую поддержку со стороны Creative-Pioneering Researchers Program через Сеульский национальный университет (2021) и грант NRF, финансируемый корейским правительством (MSIT; Грант Nos. NRF-2020R1A2C2101871 и NRF-2021M3A9I4022936). M.L. и J.P. признают финансовую поддержку со стороны POSCO Science Fellowship of POSCO TJ Park Foundation и грант NRF, финансируемый корейским правительством (MSIT; Номер гранта НРФ-2017R1A5A1015365). J.P. признает финансовую поддержку из гранта NRF, финансируемого корейским правительство....

Материалы

NameCompanyCatalog NumberComments
1-methyl-2-pyrrolidinone (NMP)Sigma Aldrich, USA443778
Acetone
AFMPark Systems, South KoreaNX-10
AlignerMidas System, South KoreaMDA-600S
AZ 300 MIF developerAZ Electronic Materials USA Corp., USA184411
Cryo-EM holderGatan, USA626 single tilt cryo-EM holder
Cryo-plunging machineThermo Fisher SCIENTIFIC, USAVitrobot Mark IV
Focused ion beam-scanning electron microscopy (FIB-SEM)FEI Company, USAHelios NanoLab 650
Glow dischargerTed Pella Inc., USAPELCO easiGlow
Graphene oxide (GO) solutionSigma Aldrich, USA763705
Hexamethyldisizazne (HMDS), 98+%Alfa Aesar, USA10226590
Low pressure chemical vapor deposition (LPCVD)Centrotherm, GermanyLPCVD E1200
maP1205 positive PRMicro resist technology, GermanyA15139
Potassium hydroxide (KOH), flakeDAEJUNG CHEMICALS & METALS Co. LTD., South Korea6597-4400
Raman SpectrometerNOST, South KoreaConfocal Micro Raman System HEDA
Reactive ion etcher (RIE)Scientific Engineering, South KoreaLab-built
SEMCarl Zeiss, GermanySUPRA 55VP
Si waferJP COMMERCE, South Korea4" Silicon wafer, P(B)type, (100), 1-30ohm.c m, DSP, T:100um
Spin coaterDong Ah Trade Corp., South KoreaACE-200
TEMJEOL, JapanJEM-2100F

Ссылки

  1. Dillard, R. S., et al. Biological applications at the cutting edge of cryo-electron microscopy. Microscopy and Microanalysis. 24 (4), 406-419 (2018).
  2. Meyerson, J. R., et al. Self-assembled mono....

Перепечатки и разрешения

Запросить разрешение на использование текста или рисунков этого JoVE статьи

Запросить разрешение

Смотреть дополнительные статьи

182

This article has been published

Video Coming Soon

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены