Sign In

34.11 : Water and Mineral Acquisition

Specialized tissues in plant roots have evolved to capture water, minerals, and some ions from the soil. Roots exhibit a variety of branching patterns that facilitate this process. The outermost root cells have specialized structures called root hairs that increase the root surface, thus increasing soil contact. Water can passively cross into roots, as the concentration of water in the soil is higher than that of the root tissue. Minerals, in contrast, are actively transported into root cells.

Soil has a negative charge, so positive ions tend to remain attached to soil particles. To circumvent this, roots pump carbon dioxide into the soil, which spontaneously breaks down, releasing positively charged protons (H+) into the soil. These protons displace soil-associated positively charged ions that are available to be pumped into the root tissue, a process called cation exchange. Negatively charged anions exploit the tendency of H+ ions to diffuse down their concentration gradient and back into root cells using co-transport: ions like Cl- are cotransported into the root tissue in association with H+ ions.

Molecules can travel into the core of the root tissue, called the stele, by two routes. Apoplastic transport is the movement of molecules in the spaces created between the continuous cell walls of neighboring cells and their corresponding membranes. In contrast, symplastic transport is the movement of molecules through the cytoplasm of plant cells, which utilizes cellular junctions called plasmodesmata, which allow the free cytoplasmic passage of molecules between adjacent cells. In order to enter the stele, molecules must move into the symplast, as Casparian strips located in the root's endodermis prevent passage of solutes in the apoplast from entering the stele. Therefore, in order to enter into the symplast, solutes must pass through a cell's semipermeable membrane, protecting cells from toxic or unwanted molecules from the soil.

Tags
WaterMineral AcquisitionPlantsPhotosynthesisMetabolismNutrientsInorganic NutrientsNitrogenPotassiumPlant RootsSoilHydrogen IonsCarbon DioxideBicarbonate AnionCation ExchangeRoot ArchitectureBranching PatternsRoot HairsWater AbsorptionActive ProcessesPassive ProcessesApoplastSymplast

From Chapter 34:

article

Now Playing

34.11 : Water and Mineral Acquisition

Plant Structure, Growth, and Nutrition

27.1K Views

article

34.1 : Introduction to Plant Diversity

Plant Structure, Growth, and Nutrition

41.4K Views

article

34.2 : Non-vascular Seedless Plants

Plant Structure, Growth, and Nutrition

59.3K Views

article

34.3 : Seedless Vascular Plants

Plant Structure, Growth, and Nutrition

55.5K Views

article

34.4 : Introduction to Seed Plants

Plant Structure, Growth, and Nutrition

54.5K Views

article

34.5 : Basic Plant Anatomy: Roots, Stems, and Leaves

Plant Structure, Growth, and Nutrition

51.6K Views

article

34.6 : Plant Cells and Tissues

Plant Structure, Growth, and Nutrition

51.8K Views

article

34.7 : Meristems and Plant Growth

Plant Structure, Growth, and Nutrition

38.2K Views

article

34.8 : Primary and Secondary Growth in Roots and Shoots

Plant Structure, Growth, and Nutrition

49.3K Views

article

34.9 : Morphogenesis

Plant Structure, Growth, and Nutrition

22.6K Views

article

34.10 : Light Acquisition

Plant Structure, Growth, and Nutrition

8.1K Views

article

34.12 : Short-distance Transport of Resources

Plant Structure, Growth, and Nutrition

15.0K Views

article

34.13 : Xylem and Transpiration-driven Transport of Resources

Plant Structure, Growth, and Nutrition

21.9K Views

article

34.14 : Regulation of Transpiration by Stomata

Plant Structure, Growth, and Nutrition

26.6K Views

article

34.15 : Adaptations that Reduce Water Loss

Plant Structure, Growth, and Nutrition

24.1K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved