Sign In

30.20 : Superconductor

A substance that reaches superconductivity, a state in which magnetic fields cannot penetrate, and there is no electrical resistance, is referred to as a superconductor. In 1911, Heike Kamerlingh Onnes of Leiden University, a Dutch physicist, observed a relation between the temperature and the resistance of the element mercury. The mercury sample was then cooled in liquid helium to study the linear dependence of resistance on temperature. It was observed that, as the temperature decreased, the resistance dropped. Kamerlingh Onnes continued to cool the mercury sample further, and as the temperature approached 4.2 K, the resistance abruptly went to zero. This is the critical temperature for mercury, where the mercury sample enters into a phase with absolute zero resistance, and this phenomenon is known as superconductivity. In the case of conductors, the resistance is not equal to zero but is less than 0.01 Ω. There are various methods to measure very small resistances, such as the four-point method, but an ohmmeter is not acceptable for testing superconductivity resistance.

Several other materials have been discovered in the superconducting phase when the temperature reaches near absolute zero. In 1941, an alloy of niobium-nitride was found to become superconducting at 16 kelvin; similarly, in 1953, vanadium-silicon was found to become superconductive at 17.5 kelvin. The temperatures for the transition into superconductivity were slowly creeping higher. Surprisingly, many good conductors, like copper, silver, and gold, do not exhibit superconductivity.

Tags
SuperconductorSuperconductivityHeike Kamerlingh OnnesMercuryCritical TemperatureElectrical ResistanceLiquid HeliumPhase TransitionNiobium nitrideVanadium siliconAbsolute ZeroFour point MethodConductivity

From Chapter 30:

article

Now Playing

30.20 : Superconductor

Electromagnetic Induction

899 Views

article

30.1 : Induction

Electromagnetic Induction

3.5K Views

article

30.2 : Faraday's Law

Electromagnetic Induction

3.5K Views

article

30.3 : Lenz's Law

Electromagnetic Induction

3.2K Views

article

30.4 : Motional Emf

Electromagnetic Induction

2.9K Views

article

30.5 : Faraday Disk Dynamo

Electromagnetic Induction

1.8K Views

article

30.6 : Induced Electric Fields

Electromagnetic Induction

3.2K Views

article

30.7 : Induced Electric Fields: Applications

Electromagnetic Induction

1.2K Views

article

30.8 : Eddy Currents

Electromagnetic Induction

1.3K Views

article

30.9 : Displacement Current

Electromagnetic Induction

2.6K Views

article

30.10 : Significance of Displacement Current

Electromagnetic Induction

4.0K Views

article

30.11 : Electromagnetic Fields

Electromagnetic Induction

2.0K Views

article

30.12 : Maxwell's Equation Of Electromagnetism

Electromagnetic Induction

2.7K Views

article

30.13 : Symmetry in Maxwell's Equations

Electromagnetic Induction

3.0K Views

article

30.14 : Ampere-Maxwell's Law: Problem-Solving

Electromagnetic Induction

332 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved