Sign In

Consider a component AB undergoing a linear motion. Along with a linear motion, point B also rotates around point A. To comprehend this complex movement, position vectors for both points A and B are established using a stationary reference frame. The absolute velocity of point B is determined by adding the absolute velocity of point A, the relative velocity of point B in the rotating frame, and the effects caused by the angular velocity within the rotating frame.

Time differentiation is employed in order to understand the acceleration of point B. The first term derived from this process represents the linear acceleration of point A, gauged from a stationary frame. The second term is identified as the cross-product of the angular acceleration and the position vector determining the relative position of point B with respect to point A, rBA. Thereafter, the third term presents itself as the cross product of angular velocity and the rate of change of the position vector rBA. This term can be further expanded using the distributive property of vector products. The final term is the time derivative of the effects of angular velocity caused by the rotating frame of reference.

In this scenario, it is important to note that the initial two terms signify the acceleration of point B within the rotating frame of reference. Meanwhile, the last two terms can be simplified to derive the final equation for the acceleration of point B, thus providing a comprehensive understanding of its movement.

Tags
Relative Motion AnalysisRotating AxesAccelerationPosition VectorsLinear MotionAngular VelocityAbsolute VelocityRelative VelocityLinear AccelerationAngular AccelerationCross ProductTime DifferentiationRotating Frame Of ReferenceDistributive Property

From Chapter 15:

article

Now Playing

15.9 : Relative Motion Analysis using Rotating Axes - Acceleration

Planar Kinematics of a Rigid Body

145 Views

article

15.1 : Planar Rigid-Body Motion

Planar Kinematics of a Rigid Body

231 Views

article

15.2 : Rotational Motion about a Fixed Axis

Planar Kinematics of a Rigid Body

206 Views

article

15.3 : Kinematic Equations for Rotation

Planar Kinematics of a Rigid Body

101 Views

article

15.4 : Absolute Motion Analysis- General Plane Motion

Planar Kinematics of a Rigid Body

113 Views

article

15.5 : Relative Motion Analysis - Velocity

Planar Kinematics of a Rigid Body

165 Views

article

15.6 : Instantaneous Center of Zero Velocity

Planar Kinematics of a Rigid Body

250 Views

article

15.7 : Relative Motion Analysis - Acceleration

Planar Kinematics of a Rigid Body

165 Views

article

15.8 : Relative Motion Analysis using Rotating Axes

Planar Kinematics of a Rigid Body

231 Views

article

15.10 : Relative Motion Analysis using Rotating Axes-Problem Solving

Planar Kinematics of a Rigid Body

185 Views

article

15.11 : Equation of Motion: Rotation About a Fixed Axis

Planar Kinematics of a Rigid Body

112 Views

article

15.12 : Equation of Motion: General Plane motion

Planar Kinematics of a Rigid Body

122 Views

article

15.13 : Equation of Motion: General Plane motion - Problem Solving

Planar Kinematics of a Rigid Body

77 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved