JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

डीएनए टुकड़े के पृथक्करण के लिए agarose जेल वैद्युतकणसंचलन

Published: April 20th, 2012

DOI:

10.3791/3923

1Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles

Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb1. Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits2. During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight3. The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along4. The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation5; 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to:

1. Understand the mechanism by which DNA fragments are separated within a gel matrix
2. Understand how conformation of the DNA molecule will determine its mobility through a gel matrix
3. Identify an agarose solution of appropriate concentration for their needs
4. Prepare an agarose gel for electrophoresis of DNA samples
5. Set up the gel electrophoresis apparatus and power supply
6. Select an appropriate voltage for the separation of DNA fragments
7. Understand the mechanism by which ethidium bromide allows for the visualization of DNA bands
8. Determine the sizes of separated DNA fragments
 

Explore More Videos

62

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved