JoVE Logo
Faculty Resource Center

Sign In

Abstract

Chemistry

折り紙インスパイアパターン化され、再構成可能な粒子の自己組織化

Published: February 4th, 2013

DOI:

10.3791/50022

1Department of Chemical and Biomolecular Engineering, The Johns Hopkins University , 2Department of Chemistry, The Johns Hopkins University

正確にパターンに2次元(2D)の構造を使用することができるようなフォトリソグラフィー、電子ビームリソグラフィ、ソフトリソグラフィなど数多くのテクニックがあります。これらの技術は、成熟している高精度を提供し、それらの多くは、ハイスループットな方法で実装することができます。我々は平面リソグラフィの利点を活用し、表面張力や残留応力に由来する1月20日 、請求の物理的な力は、3次元(3D)構造に曲線や折り目平面構造に使用されている自己の折りたたみ方法でそれらを組み合わせる。そうすることで、我々は質量正確に合成するために挑戦している静的および再構成可能な粒子をパターン化し生産することが可能になります。

本稿では、詳細は、顕著なのは、パターン化された粒子を作成するための実験プロトコルを可視化(a)に恒久的に接合され、中空、多面体その自己組織化·液化ヒンジ21から23の表面エネルギーの最小化による自己シールおよび(b)グリッパー、自己倍残留応力パワードヒンジ24,25に起因する。記載された特定のプロトコルは、マイクロメートルからセンチメートル長さスケールに至るまでの全体的なサイズの粒子を作成するために使用できます。また、任意のパターンはコロイド科学、エレクトロニクス、光学、医療における重要性の粒子の表面に定義することができます。より一般的には、セルフシールヒンジを使用した自己組み立て機械的に硬質粒子の概念はさらに小さく、100nmの長さの粒子の作成 ​​には、いくつかのプロセス変更で、適用されるスケール22、26および21を含む金属材料の範囲を持つ、半導体9およびポリマー27。再構成可能な把持デバイスの残留応力動力作動に関しては、当社の特定のプロトコルは100μmから2.5mmまでのサイズのデバイスへの関連性のクロムヒンジを採用しています。しかしながら、より一般的には、そのようなテザー無残留応力の概念電動アクチュエーションは、おそらくさらに小さいナノスケールの把握デバイスを作成するために、そのようなヘテロエピタキシャル堆積された半導体膜5,7のような代替高応力材料を使用することができます。

Explore More Videos

72

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved