A subscription to JoVE is required to view this content. Sign in or start your free trial.
The overall goal of this method is to determine the low-energy electronic structure of solids at ultra-low temperatures using Angle-Resolved Photoemission Spectroscopy with synchrotron radiation.
The physical properties of a material are defined by its electronic structure. Electrons in solids are characterized by energy (ω) and momentum (k) and the probability to find them in a particular state with given ω and k is described by the spectral function A(k, ω). This function can be directly measured in an experiment based on the well-known photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize back in 1921. In the photoelectric effect the light shone on a surface ejects electrons from the material. According to Einstein, energy conservation allows one to determine the energy of an electron inside the sample, provided the energy of the light photon and kinetic energy of the outgoing photoelectron are known. Momentum conservation makes it also possible to estimate k relating it to the momentum of the photoelectron by measuring the angle at which the photoelectron left the surface. The modern version of this technique is called Angle-Resolved Photoemission Spectroscopy (ARPES) and exploits both conservation laws in order to determine the electronic structure, i.e. energy and momentum of electrons inside the solid. In order to resolve the details crucial for understanding the topical problems of condensed matter physics, three quantities need to be minimized: uncertainty* in photon energy, uncertainty in kinetic energy of photoelectrons and temperature of the sample.
In our approach we combine three recent achievements in the field of synchrotron radiation, surface science and cryogenics. We use synchrotron radiation with tunable photon energy contributing an uncertainty of the order of 1 meV, an electron energy analyzer which detects the kinetic energies with a precision of the order of 1 meV and a He3 cryostat which allows us to keep the temperature of the sample below 1 K. We discuss the exemplary results obtained on single crystals of Sr2RuO4 and some other materials. The electronic structure of this material can be determined with an unprecedented clarity.
Nowadays ARPES is widely used to determine the electronic structure of solids. Usually, different variations of this method are defined by the source of the radiation needed to excite the electrons. We use synchrotron radiation since it offers a unique opportunity to tune the polarization and the excitation photon energy in a wide energy range and is characterized by high intensity, small bandwidth (uncertainty in energy hn) and it can be focused to a narrow beam to collect photoelectrons from a spot of a few tens of microns. Synchrotron radiation is generated in electron storage rings forcing electrons circulating in the ring with an energy of the order of 2 ....
1. Mounting the Sample
The ultra-low temperatures of our setup together with the high resolution of the beamline and analyzer allow us to record spectra with very high overall resolution. This is illustrated in Figure 3. The usual test of the energy resolution is to measure the width of the Fermi edge of a metal. In this case it is a freshly evaporated indium film. The full width at half maximum (FWHM) of the Gaussian, which when convoluted with the step-function precisely describes the edge, is of the order of 2 meV. Of more .......
As is shown above, the implemented method is very efficient in studying the low-energy electronic structure of single crystals. Recent instrumental improvements have turned ARPES from a mere characterization and band-mapping tool into a sophisticated many-body spectroscopy. A modern experiment delivers information about the electronic structure of a solid or a nano-object with a new level of precision. Access to the Fermi surface in the case of a metal, energy gaps of semiconductors and insulators, their surface st.......
We gratefully acknowledge the help of Rolf Follath, Roland Hübel, K. Möhler, Dmytro Inosov, Jörg Fink, Andreas Koitzsch, Bernd Büchner, Andrei Varykhalov, Emile Rienks, Oliver Rader, Setti Thirupathaiah, Denis Vyalikh, Sergey Molodtsov, Clemens Laubschat, Ramona Weber, Hermann Dürr, Wolfgang Eberhardt, Christian Jung, Thomas Blume, Gerd Reichardt, David Batchelor, Kai Godehusen, Martin Knupfer, Stefan Leßny, Dirk Lindackers, Stefan Leger, Ralf Voigtländer, Ronny Schönfelder, who conceived the "1-cubed" project, designed, constructed and commissioned the beamline and end-station as well as provided organizational and user suppor....
Name | Company | Catalog Number | Comments |
Name of Reagent/Material | Company | Catalogue Number | Comments |
Single crystals of ZrTe3 and TiSe2 | grown by Dr Helmut Berger, EPFL, Lausanne | ||
Single crystals of Sr2RuO4 | grown by the group of Dr Antonio Vecchione | ||
SAMPLES ZrTe3, TiSe2, Sr2RuO4 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved