JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Angle-resolved Photoemission Spectroscopy At Ultra-low Temperatures

Published: October 9th, 2012



1Institute for Solid State Research, IFW-Dresden, 2Institute of Metal Physics of National Academy of Sciences of Ukraine, 3Diamond Light Source LTD, 4Department of Physics, University of Johannesburg, 5CNR-SPIN, and Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, 6Institute of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne

The overall goal of this method is to determine the low-energy electronic structure of solids at ultra-low temperatures using Angle-Resolved Photoemission Spectroscopy with synchrotron radiation.

The physical properties of a material are defined by its electronic structure. Electrons in solids are characterized by energy (ω) and momentum (k) and the probability to find them in a particular state with given ω and k is described by the spectral function A(k, ω). This function can be directly measured in an experiment based on the well-known photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize back in 1921. In the photoelectric effect the light shone on a surface ejects electrons from the material. According to Einstein, energy conservation allows one to determine the energy of an electron inside the sample, provided the energy of the light photon and kinetic energy of the outgoing photoelectron are known. Momentum conservation makes it also possible to estimate k relating it to the momentum of the photoelectron by measuring the angle at which the photoelectron left the surface. The modern version of this technique is called Angle-Resolved Photoemission Spectroscopy (ARPES) and exploits both conservation laws in order to determine the electronic structure, i.e. energy and momentum of electrons inside the solid. In order to resolve the details crucial for understanding the topical problems of condensed matter physics, three quantities need to be minimized: uncertainty* in photon energy, uncertainty in kinetic energy of photoelectrons and temperature of the sample.

In our approach we combine three recent achievements in the field of synchrotron radiation, surface science and cryogenics. We use synchrotron radiation with tunable photon energy contributing an uncertainty of the order of 1 meV, an electron energy analyzer which detects the kinetic energies with a precision of the order of 1 meV and a He3 cryostat which allows us to keep the temperature of the sample below 1 K. We discuss the exemplary results obtained on single crystals of Sr2RuO4 and some other materials. The electronic structure of this material can be determined with an unprecedented clarity.

Nowadays ARPES is widely used to determine the electronic structure of solids. Usually, different variations of this method are defined by the source of the radiation needed to excite the electrons. We use synchrotron radiation since it offers a unique opportunity to tune the polarization and the excitation photon energy in a wide energy range and is characterized by high intensity, small bandwidth (uncertainty in energy hn) and it can be focused to a narrow beam to collect photoelectrons from a spot of a few tens of microns. Synchrotron radiation is generated in electron storage rings forcing electrons circulating in the ring with an energy of the order of 2 ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Mounting the Sample

  1. This experiment uses synchrotron radiation produced by the BESSY storage ring of Helmholtz-Zentrum Berlin. The photons travel a beamline to our end-station where a sample is mounted.
  2. Begin with a single crystal of the material to be investigated, here strontium ruthenate. Use silver-based epoxy to glue the sample to the sample holder. The silver-based epoxy ensures good thermal and electrical contact.
  3. Glue an aluminum top-post to the surface of the single-cry.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The ultra-low temperatures of our setup together with the high resolution of the beamline and analyzer allow us to record spectra with very high overall resolution. This is illustrated in Figure 3. The usual test of the energy resolution is to measure the width of the Fermi edge of a metal. In this case it is a freshly evaporated indium film. The full width at half maximum (FWHM) of the Gaussian, which when convoluted with the step-function precisely describes the edge, is of the order of 2 meV. Of more .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

As is shown above, the implemented method is very efficient in studying the low-energy electronic structure of single crystals. Recent instrumental improvements have turned ARPES from a mere characterization and band-mapping tool into a sophisticated many-body spectroscopy. A modern experiment delivers information about the electronic structure of a solid or a nano-object with a new level of precision. Access to the Fermi surface in the case of a metal, energy gaps of semiconductors and insulators, their surface st.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We gratefully acknowledge the help of Rolf Follath, Roland Hübel, K. Möhler, Dmytro Inosov, Jörg Fink, Andreas Koitzsch, Bernd Büchner, Andrei Varykhalov, Emile Rienks, Oliver Rader, Setti Thirupathaiah, Denis Vyalikh, Sergey Molodtsov, Clemens Laubschat, Ramona Weber, Hermann Dürr, Wolfgang Eberhardt, Christian Jung, Thomas Blume, Gerd Reichardt, David Batchelor, Kai Godehusen, Martin Knupfer, Stefan Leßny, Dirk Lindackers, Stefan Leger, Ralf Voigtländer, Ronny Schönfelder, who conceived the "1-cubed" project, designed, constructed and commissioned the beamline and end-station as well as provided organizational and user suppor....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of Reagent/Material Company Catalogue Number Comments
Single crystals of ZrTe3 and TiSe2 grown by Dr Helmut Berger, EPFL, Lausanne
Single crystals of Sr2RuO4 grown by the group of Dr Antonio Vecchione
ZrTe3, TiSe2, Sr2RuO4

  1. Borisenko, S. V. One-Sign Order Parameter in Iron Based Superconductor. Symmetry. 4, 251-264 (2012).
  2. Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, J. G., Lichtenberg, F. Superconductivity in a layered perovskite without copper. Nature (London). 372, 532 (1994).
  3. Singh, D. J. Relationship of Sr2RuO4 to the superconducting layered cuprates. Phys. Rev. B. 52, 1358 (1995).
  4. Zabolotnyy, V. B. Surface and bulk electronic structure of the unconventional superconductor Sr2RuO4: unusual splitting of the β band. New Journal of Physics. 14, 63039 (2012).
  5. Stöwe, K., Wagner, F. Crystal Structure and Calculated Electronic Band Structure of ZrTe3. Journal of Solid State Chemistry. 138, 160-168 (1998).
  6. Zabolotnyy, V. B. Momentum and temperature dependence of renormalization effects in the high-temperature superconductor YBa2Cu3O7-δ. Phys. Rev. B. 76, 064519 (2007).
  7. Zabolotnyy, V. B. Disentangling surface and bulk photoemission using circularly polarized light. Phys. Rev. B. 76, 024502 (2007).
  8. Kordyuk, A. A., Borisenko, S. V., Kim, T. K., Nenkov, K. A., Knupfer, M., Fink, J., Golden, M. S., Berger, H., Follath, R. Origin of the Peak-Dip-Hump Line Shape in the Superconducting-State (π,0) Photoemission Spectra of Bi2Sr2CaCu2O8. Phys. Rev. Lett. 89, 077003 (2002).
  9. Inosov, D. S., Fink, J., Kordyuk, A. A., Borisenko, S. V., Zabolotnyy, V. B., Schuster, R., Knupfer, M., B?chner, B., Follath, R., D?rr, H. A., Eberhardt, W., Hinkov, V., Keimer, B., Berger, H. Momentum and Energy Dependence of the Anomalous High-Energy Dispersion in the Electronic Structure of High Temperature Superconductors. Phys. Rev. Lett. 99, 237002 (2007).
  10. Inosov, D. S., Schuster, R., Kordyuk, A. A., Fink, J., Borisenko, S. V., Zabolotnyy, V. B., Evtushinsky, D. V., Knupfer, M., B?chner, B., Follath, R., Berger, H. Excitation energy map of high-energy dispersion anomalies in cuprates. Phys. Rev. B. 77, 212504 (2008).
  11. Hüfner, S. . Photoelectron Spectroscopy, Principles and Applications. , (1996).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved