JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Movement Retraining using Real-time Feedback of Performance

Published: January 17th, 2013

DOI:

10.3791/50182

1Department of Physical Therapy, University of British Columbia

Retraining abnormal movement patterns following injury or disease is a key component of physical rehabilitation. Recent advances in technology have permitted accurate assessment of movement during a variety of tasks, with near instantaneous quantification of results. This provides new opportunities for modification of faulty movement patterns in real time.

Any modification of movement - especially movement patterns that have been honed over a number of years - requires re-organization of the neuromuscular patterns responsible for governing the movement performance. This motor learning can be enhanced through a number of methods that are utilized in research and clinical settings alike. In general, verbal feedback of performance in real-time or knowledge of results following movement is commonly used clinically as a preliminary means of instilling motor learning. Depending on patient preference and learning style, visual feedback (e.g. through use of a mirror or different types of video) or proprioceptive guidance utilizing therapist touch, are used to supplement verbal instructions from the therapist. Indeed, a combination of these forms of feedback is commonplace in the clinical setting to facilitate motor learning and optimize outcomes.

Laboratory-based, quantitative motion analysis has been a mainstay in research settings to provide accurate and objective analysis of a variety of movements in healthy and injured populations. While the actual mechanisms of capturing the movements may differ, all current motion analysis systems rely on the ability to track the movement of body segments and joints and to use established equations of motion to quantify key movement patterns. Due to limitations in acquisition and processing speed, analysis and description of the movements has traditionally occurred offline after completion of a given testing session.

This paper will highlight a new supplement to standard motion analysis techniques that relies on the near instantaneous assessment and quantification of movement patterns and the display of specific movement characteristics to the patient during a movement analysis session. As a result, this novel technique can provide a new method of feedback delivery that has advantages over currently used feedback methods.

Any significant change to the neuromuscular or musculoskeletal structure of the lower limb will likely have an impact on the characteristics of movement and associated physical function. Accordingly, improvement in physical function is an important outcome of any rehabilitation intervention. Normal repetitive movements such as walking are generally governed by motor programs that contain the necessary control information needed to activate muscles with the correct intensity and timing1. These motor programs are necessary to improve the automaticity of movement, thus reducing the amount of control devoted to movement and permitting attention to be paid to ot....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. System Preparation

  1. Clear the capture volume of any reflective material that may be observed by the cameras. This decreases the chances of actual skin-based markers being confused with stationary background markers during the movement testing and improves the overall accuracy of the session.
  2. Calibrate the cameras by aiming all cameras on stationary markers at fixed positions within the laboratory. Extend the static calibration to dynamic movements using moving markers placed at known distances. Be.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

An example from a single movement retraining session focusing on increased lateral trunk lean angle in a patient with knee OA is shown in Figure 2. After approximately 15 min of training using a combination of verbal and mirror-based feedback of performance, the patient was provided with real-time data pertaining to the amount of lateral trunk flexion. Training with this method continued for an additional 10 min. During normal (unmodified) trials, the patient exhibited a self-selected amount of lateral t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Real-time feedback of performance during movements such as walking can be a valuable adjunct to standard motion analysis approaches. Though in its relative infancy, research into specific and discrete movement modifications will certainly benefit from the ability to produce the desired modification with accuracy and in real-time. For example, if the patient requires a specific amount of movement modification, this amount can be measured and provided during the actual movement. The approach presented here can be used to t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work has been funded, in part, by the Canada Foundation for Innovation.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of the reagent Company Catalogue number Comments (optional)
Reflective markers 3x3 Design 12 mm diameter
Marker tape discs Discount Disposables TD-22 Electrode Collar, 8 mm Designed usage is as electrode collars
Motion analysis cameras Motion Analysis Corporation
Biofeedtrak Motion Analysis Corporation
Matlab The Mathworks

  1. Ivanenko, Y. P., Poppele, R. E., Lacquaniti, F. Motor control programs and walking. Neuroscientist. 12, 339-348 (2006).
  2. Woodford, H., Price, C. EMG biofeedback to improve lower extremity function after stroke. Cochrane Database Syst. Rev. 2007, CD004585 (2007).
  3. Moreland, J. D., Thomson, M. A., Fuoco, A. R. Electromyographic feedback to improve lower extremity function after stroke: a meta-analysis. Arch. Phys. Med. Rehabil. 79, 134-140 (1998).
  4. Colborne, G. R., Wright, F. V., naumann, S. Feedback of triceps surae EMG in gait of children with cerebral palsy: a controlled study. Arch. Phys. Med. Rehabil. 75, 40-45 (1994).
  5. Binder, S. A., Moll, C. B., Wolf, S. L. Evaluation of electromyographic biofeedback as an adjunct to therapeutic exercise in treating the lower extremities of hemiplegic patients. Phys. Ther. 61, 886-893 (1981).
  6. Tate, J. C., Milner, C. E. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: a systematic review. Phys. Ther. 90, 1123-1134 (2010).
  7. Miyazaki, T., Wada, M., et al. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61, 617-622 (2002).
  8. Barrios, J., Crossley, K., Davis, I. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J. Biomech. 43, 2208-2213 (2010).
  9. Hunt, M. A., Simic, M., Hinman, R. S., Bennell, K. L., Wrigley, T. V. Feasibility of a gait retraining strategy for reducing knee joint loading: Increased trunk lean guided by real-time biofeedback. J. Biomech. 44, 943-947 (2011).
  10. Simic, M., Hunt, M. A., Bennell, K. L., Hinman, R. S., Wrigley, T. V. Trunk lean gait modification and knee joint load in people with medial knee osteoarthritis: The effect of varying trunk lean angles. Arthritis Care Res. , (2012).
  11. Hunt, M. A., Simic, M., Hinman, R. S., Bennell, K. L., Wrigley, T. V. Feasibility of a gait retraining strategy for reducing knee joint loading: Increased trunk lean guided by real-time biofeedback. J. Biomech. , (2010).
  12. Mundermann, A., Asay, J., Mundermann, L., Andriacchi, T. Implications of increased medio-lateral trunk sway for ambulatory mechanics. J. Biomech. 41, 165-170 (2008).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved