JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Optogenetic Stimulation of Escape Behavior in Drosophila melanogaster

Published: January 25th, 2013

DOI:

10.3791/50192

1Department of Neurobiology, Stanford University

Genetically encoded optogenetic tools enable noninvasive manipulation of specific neurons in the Drosophila brain. Such tools can identify neurons whose activation is sufficient to elicit or suppress particular behaviors. Here we present a method for activating Channelrhodopsin2 that is expressed in targeted neurons in freely walking flies.

A growing number of genetically encoded tools are becoming available that allow non-invasive manipulation of the neural activity of specific neurons in Drosophila melanogaster1. Chief among these are optogenetic tools, which enable the activation or silencing of specific neurons in the intact and freely moving animal using bright light. Channelrhodopsin (ChR2) is a light-activated cation channel that, when activated by blue light, causes depolarization of neurons that express it. ChR2 has been effective for identifying neurons critical for specific behaviors, such as CO2 avoidance, proboscis extension and giant-fiber mediated startle response2-4. However, as the intense light sources used to stimulate ChR2 also stimulate photoreceptors, these optogenetic techniques have not previously been used in the visual system. Here, we combine an optogenetic approach with a mutation that impairs phototransduction to demonstrate that activation of a cluster of loom-sensitive neurons in the fly's optic lobe, Foma-1 neurons, can drive an escape behavior used to avoid collision. We used a null allele of a critical component of the phototransduction cascade, phospholipase C-β, encoded by the norpA gene, to render the flies blind and also use the Gal4-UAS transcriptional activator system to drive expression of ChR2 in the Foma-1 neurons. Individual flies are placed on a small platform surrounded by blue LEDs. When the LEDs are illuminated, the flies quickly take-off into flight, in a manner similar to visually driven loom-escape behavior. We believe that this technique can be easily adapted to examine other behaviors in freely moving flies.

A growing arsenal of genetically encoded tools have been developed to manipulate neural activity in specific cells in Drosophila melanogaster1. These tools enable the noninvasive activation or silencing of specific neurons in the intact and freely moving animal. Among these, Channelrhodopsin2 (ChR2), a light-activated cation channel, offers key advantages, since it can be temporally controlled and quickly induced. When neurons that express ChR2 are exposed to bright blue (470 nm) light they rapidly depolarize and exhibit elevated firing rates3-5. Such targeted activation of specific neurons in freely moving animals has revealed ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Generate Channelrhodopsin Flies

  1. Cross UAS-ChR2 flies with the Gal4 driver of your choosing, we use G105-Gal4, which is expressed in Foma-1 neurons in the optic lobe.
  2. To eliminate the possibility of a visual response to the blue light stimulation, both fly lines are in a w+norpA background.
  3. End result: w+norpA;G105-Gal4/UAS-ChR2 +
  4. After adult flies eclose, put selected females on fresh food, supplemented with 10 μM all-trans-retinal (a co-factor require.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Blind flies expressing either ChR2 or the G105 driver alone show a low rate of take-off following their illumination with bright blue light. Blind flies exhibited the same rate of take-off regardless of illumination (Figure 2), suggesting that these take-offs were spontaneous rather than due to the illumination with blue light. When the ChR2 is expressed in the Foma1 neurons, however, illumination with blue light elicits the escape response. Over 50% of the flies tested took off within 1 sec of illuminat.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We have demonstrated optogenetic stimulation of escape behaviors by bathing freely walking flies in bright blue light. This approach can be easily adapted to examine other behaviors in freely walking flies, and can be scaled to larger platforms by simply tiling the LED arrays we used over a larger area. Using either the inexpensive camera we describe, or other available camera systems, the user can tailor the frame rate and spatial resolution of the images acquired to suit the behavior of interest. Additionally, o.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was funded by a Stanford Dean's Fellowship (SEJdV), a National Institutes of Health Director's Pioneer Award (TRC DP0035350), a McKnight Foundation Scholar's Award (TRC) and R01 EY022638 (TRC).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Reagent
All-trans Retinal Advance Scientific & Chemical Inc R3041
Equipment
Heat Sink 9.2 C/W Luxeonstar LPD30-30B 30 mm square X 30 mm high
Carclo 18 ° Tri-Lens Luxeonstar 10507
Blue Rebel LED on Tri-Star Base Luxeonstar MR-B0030-20T 470 nm, 174 lm @ 700 mA.
700 mA BuckPuck DC Driver Luxeonstar 3021-D-E-700
Wiring Harness for BuckPuck Driver Luxeonstar 3021-HE
Pre-cut thermal adhesive tape Luxeonstar LXT-S-12 20 mm Hex Base
Snap-Loc Coolant Hose, ¼" ID McMaster-Carr 5307K49
Snap-Loc Coolant Hose Connector McMaster-Carr 5307K39 ¼" NPT Male
Laboratory Grade Switching Mode Programmable DC Power Supply BK Precision 1698
Exilim camera Casio EX-FH20

  1. Venken, K., Simpson, J., Bellen, H. Genetic manipulations of genes and cells in the nervous system of the fruit fly. Neuron. 72, 202-230 (2011).
  2. Gordon, M., Scott, K. Motor control in a Drosophila taste circuit. Neuron. 61, 373-384 (2009).
  3. Suh, G. S. B., et al. Light activation of an innate olfactory avoidance response in Drosophila. Current Biology. 17, 905-908 (2007).
  4. Zhang, W., Ge, W., Wang, Z. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons. European Journal of Neuroscience. 26, 2405-2416 (2007).
  5. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Science. 100, 13940-13945 (2003).
  6. de Vries, S., Clandinin, T. Loom-sensitive neurons link computation to action in the Drosophila visual system. Current Biology. 22, 353-362 (2012).
  7. Card, G. Escape behaviors in insects. Current Opinion in Neurobiology. 22, 1-7 (2012).
  8. Card, G., Dickinson, M. H. Visually mediated motor planning in the escape response of Drosophila. Current Biology. 18, 1300-1307 (2008).
  9. Fotowat, H., Fayyazuddin, A., Bellen, H. J., Gabbiani, F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. Journal of Neurophysiology. 102, 875-885 (2009).
  10. Card, G., Dickinson, M. H. Performance trade-offs in the flight initiation of Drosophila melanogaster. The Journal of Experimental Biology. 211, 341-353 (2008).
  11. Hammond, S., O'Shea, M. Escape flight initiation in the fly. Journal of Comparative Phsyiology A. 193, 471-476 (2007).
  12. Benzer, S. Behavioral mutants of Drosophila isolated by countercurrent distribution. PNAS. 58, 1112-1119 (1967).
  13. Bloomquist, B., et al. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell. 54, 723-733 (1988).
  14. Gohl, D., et al. A versatile in vivo system for directed dissection of gene expression patterns. Nature Methods. 8, 231-237 (2011).
  15. Zhang, F., et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox cateri. Nature Neuroscience. 11, 631-633 (2008).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved