JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

5/6th Nephrectomy in Combination with High Salt Diet and Nitric Oxide Synthase Inhibition to Induce Chronic Kidney Disease in the Lewis Rat

Published: July 3rd, 2013

DOI:

10.3791/50398

1Department of Nephrology & Hypertension, University Medical Center Utrecht

A two-stage method to establish chronic kidney disease (CKD) in the Lewis rat by surgically removing 5/6th of renal mass is described. Combination of the surgical procedure, NOS-inhibition and a high-salt diet leads to a model resembling human CKD, allowing study of causal mechanisms and development of novel therapeutic interventions.

Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.

Due to its progressive nature, ensuing end stage kidney disease, and associated cardiovascular morbidity and mortality, CKD is a growing public health problem1. Slowing CKD progression is therefore a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. The kidney consists of a broad range of different cell types that interact with each other. This complexity cannot be mimicked in vitro.

To study novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well-known experimen....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All experiments are executed in accordance to the animal experimental ethical guide lines of the Utrecht experimental animal committee. The protocol is performed under the guidance and approval of the author's institution's animal care and use committee.

CKD is induced in male inbred Lewis rats (Charles River, Sulzfeld, Germany) at the age of 8 weeks. Rats are housed under standard conditions in a light-, temperature- and humidity-controlled environment.

1. Surgery Pr.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

After subtotal nephrectomy, approximately 1/6th of total renal mass is left. Figure 4 shows the weight of the removed part of the right kidney with mean and standard deviation in two previous experiments. One should keep in mind that in the week after UNX, hypertrophy of the left kidney occurs; indicating that the weight that needs to be removed calculated based on the weight of the right kidney always results in less than 5/6th removal. However, since it is not possible to determine the weight of the le.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Surgical removal of 5/6th of renal mass in the Lewis rat, combined with a high-salt diet and temporary NOS inhibition leads to a model of CKD that resembles human CKD and allows study of causal mechanisms and efficacy of therapeutic interventions in CKD.

The 5/6th nephrectomy model is a well-known and extensively described model for CKD. However, simply removing 5/6th of renal mass does not lead to immediate renal failure in all rat strains. We use Lewis rats to study the effects of cell-based.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Krista den Ouden for her excellent technical assistance. This technique was financially supported by the Dutch Kidney foundation, grant C06.2174. M.C.V. is supported by the Netherlands organisation for Scientific Research (NWO) Vidi-grant 016.096.359.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
      Reagent
L-NNA Sigma-aldrich N5501  
Spongostan dental: gel foam pads 1x1x1 cm Johnson&Johnson Ms0005  
Ethicon Vicryl FS-2S naald 4/0 V392H p/36 Ethicon V303H  
Ethicon Vicryl RB-1+ naald 5/0 V303H p/36 Ethicon V392H  
Buprenorphine (0.3 mg/ml) Via local pharmacist ordered by Reckitt Benckiser pharmaceuticals unknown  
      Equipment
Student Tissue Forceps - 1x2 Teeth 12 cm Fine Science Tools (FST) 91121-12  
Student Standard Pattern Forceps FST 91100-12  
Mayo Scissors FST 14010-15  
2X Semken Forceps FST 11008-13  
Student Iris Scissors FST 91460-11  
Olsen-Hegar Needle Holder FST 12002-14  

  1. AS, G. o., Chertow, G. M., Fan, D., McCulloch, C. E., Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351 (13), 1296-1305 (2004).
  2. Fleck, C., Appenroth, D., et al. Suitability of 5/6 nephrectomy (5/6NX) for the induction of interstitial renal fibrosis in rats--influence of sex, strain, and surgical procedure. Exp. Toxicol. Pathol. 57 (3), 195-205 (2006).
  3. Griffin, K. A., Picken, M. M., Churchill, M., Churchill, P., Bidani, A. K. Functional and structural correlates of glomerulosclerosis after renal mass reduction in the rat. J. Am. Soc. Nephrol. 11 (3), 497-506 (2000).
  4. Kang, D. H., Kanellis, J., et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol. 13 (3), 806-816 (2002).
  5. Baylis, C. Nitric oxide synthase derangements and hypertension in kidney disease. Curr. Opin. Nephrol. Hypertens. 21 (1), 1-6 (2012).
  6. Bongartz, L. G., Braam, B., et al. Transient nitric oxide reduction induces permanent cardiac systolic dysfunction and worsens kidney damage in rats with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298 (3), 815-823 (2010).
  7. Fujihara, C. K., De N, G., Zatz, R. Chronic nitric oxide synthase inhibition aggravates glomerular injury in rats with subtotal nephrectomy. J. Am. Soc. Nephrol. 5 (7), 1498-1507 (1995).
  8. Fujihara, C. K., Sena, C. R., Malheiros, D. M., Mattar, A. L., Zatz, R. Short-term nitric oxide inhibition induces progressive nephropathy after regression of initial renal injury. Am. J. Physiol. Renal Physiol. 290 (3), F632-F640 (2006).
  9. Dikow, R., Kihm, L. P., et al. Increased infarct size in uremic rats: reduced ischemia tolerance?. J. Am. Soc. Nephrol. 15 (6), 1530-1536 (2004).
  10. Elrashidy, R. A., Asker, M. E., Mohamed, H. E. Pioglitazone attenuates cardiac fibrosis and hypertrophy in a rat model of diabetic nephropathy. J. Cardiovasc. Pharmacol. Ther. 17 (3), 324-333 (2012).
  11. Haylor, J., Schroeder, J., et al. Skin gadolinium following use of MR contrast agents in a rat model of nephrogenic systemic fibrosis. Radiology. 263 (1), 107-116 (2012).
  12. Moriguchi, Y., Yogo, K., et al. Left ventricular hypertrophy is associated with inflammation in sodium loaded subtotal nephrectomized rats. Biomed. Res. 32 (2), 83-90 (2011).
  13. van Koppen, A., Joles, J. A., et al. Healthy bone marrow cells reduce progression of kidney failure better than CKD bone marrow cells in rats with established chronic kidney disease. Cell Transplant. , (2012).
  14. Baylis, C., Corman, B. The aging kidney: insights from experimental studies. J. Am. Soc. Nephrol. 9 (4), 699-709 (1998).
  15. Szabo, A. J., Muller, V., Chen, G. F., Samsell, L. J., Erdely, A., Baylis, C. Nephron number determines susceptibility to renal mass reduction-induced CKD in Lewis and Fisher 344 rats: implications for development of experimentally induced chronic allograft nephropathy. Nephrol. Dial Transplant. 23 (8), 2492-2495 (2008).
  16. Darling, I. M., Morris, M. E. Evaluation of "true" creatinine clearance in rats reveals extensive renal secretion. Pharm. Res. 8 (10), 1318-1322 (1991).
  17. Levey, A. S. Measurement of renal function in chronic renal disease. Kidney Int. 38 (1), 167-184 (1990).
  18. Myers, G. L., Miller, W. G., et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin. Chem. 52 (1), 5-18 (2006).
  19. Hostetter, T. H., Meyer, T. W. The development of clearance methods for measurement of glomerular filtration and tubular reabsorption. Am. J. Physiol. Renal Physiol. 287 (5), F868-F870 (2004).
  20. Koeners, M. P., Racasan, S., Koomans, H. A., Joles, J. A., Braam, B. Nitric oxide, superoxide and renal blood flow autoregulation in SHR after perinatal L-arginine and antioxidants. Acta. Physiol. (Oxf). 190 (4), 329-338 (2007).
  21. van den Brandt, J., Wang, D., Kwon, S. H., Heinkelein, M., Reichardt, H. M. Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis. 39 (2), 94-99 (2004).
  22. Kreutz, R., Kovacevic, L., Schulz, A., Rothermund, L., Ketteler, M., Paul, M. Effect of high NaCl diet on spontaneous hypertension in a genetic rat model with reduced nephron number. J. Hypertens. 18 (6), 777-782 (2000).
  23. Liu, Z. C., Chow, K. M., Chang, T. M. Evaluation of two protocols of uremic rat model: partial nephrectomy and. 25 (6), 935-943 (2003).
  24. Griffin, K. A., Picken, M., Bidani, A. K. Method of renal mass reduction is a critical modulator of subsequent hypertension and glomerular injury. J. Am. Soc. Nephrol. 4 (12), 2023-2031 (1994).
  25. Meyer, F., Ioshii, S. O., et al. Laparoscopic partial nephrectomy in rats. Acta. Cir. Bras. 22 (2), 152-156 (2007).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved