A subscription to JoVE is required to view this content. Sign in or start your free trial.
This manuscript describes how viral vector-mediated local gene delivery provides an attractive way to express transgenes in the central nervous system. The protocol outlines all crucial steps to perform a viral vector injection in the substantia nigra of the rat to develop a viral vector-based animal model for Parkinson's disease.
In order to study the molecular pathways of Parkinson's disease (PD) and to develop novel therapeutic strategies, scientific investigators rely on animal models. The identification of PD-associated genes has led to the development of genetic PD models. Most transgenic α-SYN mouse models develop gradual α-SYN pathology but fail to display clear dopaminergic cell loss and dopamine-dependent behavioral deficits. This hurdle was overcome by direct targeting of the substantia nigra with viral vectors overexpressing PD-associated genes. Local gene delivery using viral vectors provides an attractive way to express transgenes in the central nervous system. Specific brain regions can be targeted (e.g. the substantia nigra), expression can be induced in the adult setting and high expression levels can be achieved. Further, different vector systems based on various viruses can be used. The protocol outlines all crucial steps to perform a viral vector injection in the substantia nigra of the rat to develop a viral vector-based alpha-synuclein animal model for Parkinson's disease.
To study the pathophysiology of PD and to develop novel therapeutic strategies, there is an urgent need for animal models that closely resemble the neuropathology, physiology and motor symptoms of human PD. The higher the predictive value, the better we can translate new therapies from animal models to patients.
The discovery of alpha-synuclein (α-SYN) as the first PARK gene in 1997 led to the development of the first genetic PD models. Many transgenic mice overexpressing human wild-type (WT) or mutant (A30P, A53T) α-SYN have been generated over the last decade. The levels of α-SYN overexpression have proven to be crucial in ....
All animal experiments are carried out in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) and approved by the Bioethical Committee of the University of Leuven (Belgium).
1. Recombinant AAV Production and Purification
Note: rAAV vector production and purification was performed by the Leuven Viral Vector Core (LVVC) as previously described17.
The overall scheme of the experiment is depicted in Figure 1
rAAV 2/7-mediated overexpression of A53T α-SYN induces dopamine-dependent motor deficits.
To examine whether the level of α-SYN overexpression is sufficient to induce motor impairments in the rats, we subjected the rats to the cylinder test to evaluate spontaneous forelimb use (Figure 3A). From 3 weeks .......
There are several critical steps within the protocol. The vector titer as well as the vector purity directly influences the phenotypic outcome of the model. Excessive vector titers or insufficiently purified vector batches may result in non-specific toxicity. Therefore, the use of high quality vector batches and appropriate control vectors is indispensable. Further, the exact positioning of the rat's head in the stereotaxic frame and the accurate determination of the coordinates is essential in targeting the substant.......
The authors declare that there is no actual or potential conflict of interest.
The authors thank Joris Van Asselberghs and Ann Van Santvoort for their excellent technical assistance. Research was funded by the IWT-Vlaanderen (IWT SBO/80020), the FWO Vlaanderen (G.0768.10), by the EC-FP6 program 'DiMI' (LSHB-CT-2005-512146), the FP7 RTD project MEFOPA (HEALTH-2009-241791), the FP7 program 'INMiND' (HEALTH-F2-2011-278850), the KU Leuven (IOF-KP/07/001, OT/08/052A, IMIR PF/10/017), and the MJFox Foundation (Target validation 2010). A. Van der Perren and C. Casteels are a postdoctoral fellows of the Flemish Fund of Scientific Research. K. Van Laere is a senior clinical fellow of the Flemish Fund of Scientific Research.
....Name | Company | Catalog Number | Comments |
Female 8 weeks old Wistar rats | Janvier | / | 200-250 g |
Ketamine (Nimatek) | Eurovet animal health | 804132 | |
Medetomidine (Dormitor) | Orion-Pharma/ Janssen Animal Health | 1070-499 | |
Local anesthetic for scalp and ears: Xylocaïne 2% gel | Astrazeneca | 0137-547 | |
Terramycine | Pfizer | 0132-472 | |
Buprénorphine (Vetergesic) | Ecuphar | 2623-627 | |
Jodium 1% isopropanol | VWR | 0484-0100 | |
stereotactic head frame | Stoeling | / | |
Hamilton Syringe (30 gauge -20mm -pst 2) | Hamilton/ Filter Service | 7803-07 | |
atipamezole (Antisedan) | Orion-Pharma/Elanco | 1300-185 | |
rAAV A53T α-SYN vector | LVVC, KU Leuven | / | https://gbiomed.kuleuven.be/english/research/50000715/laboratory-of-molecular-virology-and-gene-therapy/lvvc/ |
sodium pentobarbital (Nembutal) | Ceva Santé | 0059-444 | |
microtome | Microm | HM650 | |
rabbit polyclonal synuclein Ab | Chemicon | 5038 | 1:5000 |
rabbit polyclonal TH Ab | Chemicon | 152 | 1:1000 |
Lutetium oxyorthosilicate detector-based FOCUS 220 tomograph | Siemens/ Concorde Microsystems | / | |
radioligand: 18F-FECT | In house | / | |
L-dopa: Prolopa 125 | Roche | 6mg/kg i.p. | |
DMEM, Glutamax | Life Technologies | N° 31331-093 | |
Foetal bovine serum | Life Technologies | N° 10270-106 | |
25 kD linear polyethylenimine (PEI) | Polysciences | / | |
OptiPrep Density Gradient Medium: Iodixanol | Sigma | D1556-250ML | |
Optimen | Life Technologies | N° 51985-026 | |
Paxinos 1 watston steretactic atlas, fourth Edition | Elsevier | / |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved