JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Long-term Blood Pressure Measurement in Freely Moving Mice Using Telemetry

Published: May 17th, 2016

DOI:

10.3791/53991

1Department of Physiology, University of Tennessee Health Sciences Center

The goal of this protocol is to assess systemic blood pressure in conscious freely moving mice using implantable radio-telemetry devices.

During the development of new vasoactive agents, arterial blood pressure monitoring is crucial for evaluating the efficacy of the new proposed drugs. Indeed, research focusing on the discovery of new potential therapeutic targets using genetically altered mice requires a reliable, long-term assessment of the systemic arterial pressure variation. Currently, the gold standard for obtaining long-term measurements of blood pressure in ambulatory mice uses implantable radio-transmitters, which require artery cannulation. This technique eliminates the need for tethering, restraining, or anesthetizing the animals which introduce stress and artifacts during data sampling. However, arterial blood pressure monitoring in mice via catheterization can be rather challenging due to the small size of the arteries. Here we present a step-by-step guide to illustrate the crucial key passages for a successful subcutaneous implantation of radio-transmitters and carotid artery cannulation in mice. We also include examples of long-term blood pressure activity taken from freely moving mice after a period of post-surgery recovery. Following this procedure will allow reliable direct blood pressure recordings from multiple animals simultaneously.

Hypertension is one of the major risk factors for cardiovascular diseases, arguably it is a major public health issue both in developed and developing countries1. Several animal models of experimental hypertension have been developed to mimic hypertensive responses like those observed in humans2. Among others, the ambulatory mouse represents an excellent model to study the genesis and the progression of hypertension allowing in vivo analysis of the consequences of chronic exposure to hypertension.

Blood pressure (BP) monitoring in mice has helped researchers to unravel several mechanisms involved in the p....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ethics statement: All animal procedures mentioned in this video-article were reviewed and approved by the Animal Care and Use Committee (IACUC) at the University of Tennessee Health Science Center.

Note: Use sterile microsurgery instruments throughout the surgical procedure. Surgical instruments may be sterilized utilizing an infrared sterilizer at an optimum sterilizing temperature of 1,500 °F (815.6 °C). Telemeters can be reused, however, before inserting it in the animal make sure to sterilize the entire transmi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Data can be acquired remotely by a receiver; traces are visualized on a computer screen for quality control (Figure 1a). Details such as animal ID, diastolic blood pressure and systolic blood pressure are also shown (Figure 1b). Arterial BP can be recorded continuously (24/7), or for short programmed intervals (i.e., 60 sec acquisition every hour). Data can be automatically stored in a hard disk for later analysis. Averaged BP.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Implantable radio-telemetry has improved significantly over the last decade; smaller probe size makes the implant less traumatic for the animal, prolonged battery life helps to reduce the costs, and independent telemeter frequencies eliminate crosstalk between receivers. Telemetry is considered the state-of-the-art method for collecting a wide variety of physiological parameters from freely moving animals without the artifacts associated with the use of restraint, human interaction, or anesthesia that are required by oth.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the National Institutes of Health (NIH/NHLBI) [Grant no. HL114869] and the support from UTHSC to SM.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Small animal anesthesia system Kent Scientific Corp, Torrington, Connecticut, USA low-Flow small animal anesthesia system
Pad warmer and mouse termometer Kent Scientific Corp, Torrington, Connecticut, USA allows monitoring body temperature,  and homeothermic control in small animals.
Binocular Microscope Kent Scientific Corp, Torrington, Connecticut, USA KSCXTS-1121 binocular body with boom stand pole and top LED.
Hemostat Forceps Kent Scientific Corp, Torrington, Connecticut, USA INS750451 used to clamp blood vessels or tag sutures
Small metal Clips, 7mm, Stainless Steel Kent Scientific Corp, Torrington, Connecticut, USA INS750344 used for skin closure
Betadine solution Purdue Products L.P., Stamford, CT, USA NDC-67618-150-01 10% povidone iodine topical solution
Normal saline solution Abott Laboratories 04930-04-10 Needed for preventing tissue from drying.
Nair (Hair remover lotion) Needed for fur removal from the site of incision/surgery.
Braide silk suture Teleflex Medical OEM, Coventry, Connecticut, USA Size 5.0, 6.0, 7.0
Ethanol 2716 70% ethanol for disinfection
Spring scissors  Fine Science Tool 15000-10 for minor dissection
Scissors (angled to side) Fine Science Tool 14063-011 No. 3 handle
Scalpel blade 2976-0 No. 10
Forceps (curved) Fine Science Tool 11150-10 for holding tissue
Forceps (straight) Fine Science Tool 11151-10 for holding tissue
Needle holder  Fine Science Tool 12002-12 for suturing
Fine needle nose Forceps Fine Science Tool
Isoflurane Henry Schein Animal Health, Melville, New York, USA a general inhalation anesthetic agent
Sterilizer Benchmark Scientific, 116 Corporate Blvd, South Plainfield, NJ, USA B1000 sterilize surgical tools in 5-10 seconds using infrared heating
Gauze Pads Johnson & Johnson, New Brunswick, NJ, USA JJ8513 to use for wound cleaning, prepping, scrubbin or dressing.
Telemetry Device Data Sciences International, St. Paul, MN, USA DSI-PA-C10 to record blood pressure in freely moving mice
Telemetry receiver system  coumpled with a PC Data Sciences International, St. Paul, MN, USA
small Tubing Instech Laboratories, Plymouth Meeting, PA USA BTPE-90
Vessel Cannulation Forceps, 13cm, 0.5mm OD World Precision Instruments 503374 special vessel cannulation forceps.
Tissue adhesive 3M Animal Care Products, St. Paul, MN, USA NAC No.: 11380041  use to close minor wounds, often eliminating the need for sutures and/or bandages
Weighing scale  BB300  Precision Analytical Laboratory Balance

  1. Danaei, G., et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6 (4), e1000058 (2009).
  2. Dornas, W. C., Silva, M. E. Animal models for the study of arterial hypertension. J Biosci. 36 (4), 731-737 (2011).
  3. Henze, M., et al. Persistent alterations in heart rate variability, baroreflex sensitivity, and anxiety-like behaviors during development of heart failure in the rat. Am J Physiol Heart Circ Physiol. 295 (1), H29-H38 (2008).
  4. Hoffmann, D. S., et al. Chronic tempol prevents hypertension, proteinuria, and poor feto-placental outcomes in BPH/5 mouse model of preeclampsia. Hypertension. 51 (4), 1058-1065 (2008).
  5. Lerman, L. O., Chade, A. R., Sica, V., Napoli, C. Animal models of hypertension: an overview. J Lab Clin Med. 146 (3), 160-173 (2005).
  6. Johns, C., Gavras, I., Handy, D. E., Salomao, A., Gavras, H. Models of experimental hypertension in mice. Hypertension. 28 (6), 1064-1069 (1996).
  7. Vatner, S. F., Braunwald, E. Cardiovascular control mechanisms in the conscious state. N Engl J Med. 293 (19), 970-976 (1975).
  8. Zhao, X., et al. Arterial Pressure Monitoring in Mice. Curr Protoc Mouse Biol. 1, 105-122 (2011).
  9. Whitesall, S. E., Hoff, J. B., Vollmer, A. P., D'Alecy, L. G. Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods. Am J Physiol Heart Circ Physiol. 286 (6), H2408-H2415 (2004).
  10. Kurtz, T. W., et al. Recommendations for blood pressure measurement in humans and experimental animals. Part 2: Blood pressure measurement in experimental animals: a statement for professionals from the subcommittee of professional and public education of the American Heart Association council on high blood pressure research. Hypertension. 45 (2), 299-310 (2005).
  11. Kurtz, T. W., et al. Recommendations for blood pressure measurement in animals: summary of an AHA scientific statement from the Council on High Blood Pressure Research, Professional and Public Education Subcommittee. Arterioscler Thromb Vasc Biol. 25 (3), 478-479 (2005).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved