A subscription to JoVE is required to view this content. Sign in or start your free trial.
Introducing multiple genomic alterations into cyanobacteria is an essential tool in the development of strains for industrial and basic research purposes. We describe a system for generating unmarked mutants in the model cyanobacterial species Synechocystis sp. PCC6803 and marked mutants in Synechococcus sp. PCC7002.
Cyanobacteria are ecologically important organisms and potential platforms for production of biofuels and useful industrial products. Genetic manipulation of cyanobacteria, especially model organisms such as Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002, is a key tool for both basic and applied research. Generation of unmarked mutants, whereby chromosomal alterations are introduced into a strain via insertion of an antibiotic resistance cassette (a manipulatable fragment of DNA containing one or more genes), followed by subsequent removal of this cassette using a negative selectable marker, is a particularly powerful technique. Unmarked mutants can be repeatedly genetically manipulated, allowing as many alterations to be introduced into a strain as desired. In addition, the absence of genes encoding antibiotic resistance proteins in the mutated strain is desirable, as it avoids the possibility of 'escape' of antibiotic resistant organisms into the environment. However, detailed methods for repeated rounds of genetic manipulation of cyanobacteria are not well described in the scientific literature. Here we provide a comprehensive description of this technique, which we have successfully used to generate mutants with multiple deletions, single point mutations within a gene of interest and insertion of novel gene cassettes.
Cyanobacteria are an evolutionarily ancient and diverse phylum of bacteria found in nearly every natural environment on Earth. In marine ecosystems they are particularly abundant and play a key role in many nutrient cycles, accounting for approximately half of carbon fixation1, the majority of nitrogen fixation2 and hundreds of millions of tons of hydrocarbon production3 in the oceans annually. Chloroplasts, the organelle responsible for photosynthesis in eukaryotic algae and plants, are likely to have evolved from a cyanobacterium that was engulfed by a host organism4. Cyanobacteria have proved useful model organisms for th....
1. Preparation of Culture Media
Plasmid design is critical for successful generation of both marked and unmarked mutants. Figure 1 gives an example of plasmid A and B used to generate a deletion mutant in the Synechocystis genes cpcC1 and cpcC213. In each case the 5' and 3' flanking regions are approximately 900-1,000 bp. Reduced flanking regions can be used although the smallest we have successfully trialed has been approximately 500 bp. Plasmid B can also .......
The most critical steps in generation of unmarked mutants are: 1) careful plasmid design to ensure only the targeted region is altered; 2) ensuring that samples remain axenic, especially when cultured on sucrose; 3) plating transformed cells for marked mutant generation initially on BG11 agar plates lacking antibiotics, followed by addition of agar plus antibiotics 24 hr later; 4) culturing marked mutants for 4 full days prior to plating on BG11 plus sucrose agar plates: 5) ensuring that marked mutants are fully segregat.......
The authors declare that they have no competing financial interests.
We are grateful to the Environmental Services Association Education Trust, the Synthetic Biology in Cambridge SynBio fund and the Ministry of Social Justice and Empowerment, Government of India, for financial support.
....Name | Company | Catalog Number | Comments |
NaNO3 | Sigma | S5506 | |
MgSO4.7H2O | Sigma | 230391 | |
CaCl2 | Sigma | C1016 | |
citric acid | Sigma | C0759 | |
Na2EDTA | Fisher | EDT002 | |
H3BO3 | Sigma | 339067 | |
MnCl2.4H2O | Sigma | M3634 | |
ZnSO4.7H2O | Sigma | Z4750 | |
Na2MoO4.2H2O | Sigma | 331058 | |
CuSO4.5H2O | Sigma | 209198 | |
Co(NO3)2.6H2O | Sigma | 239267 | |
Ferric ammonium citrate | Sigma | F5879 | |
K2HPO4 | Sigma | P3786 | |
Na2CO3 | Fisher | SODC001 | |
TES | Sigma | T1375 | |
NaHCO3 | Fisher | SODH001 | |
HEPES | Sigma | H3375 | |
cyanocobalamin | Sigma | 47869 | |
Na2S2O3 | Sigma | 72049 | |
Bacto agar | BD | 214010 | |
Sucrose | Fisher | SUC001 | |
Petri dish 90 mm triple vented | Greiner | 633185 | |
0.2 µm filters | Sartorius | 16534 | |
100 mL conical flasks | Pyrex | CON004 | |
Parafilm M 100 mm x38 m | Bemis | FIL003 | |
Phusion high fidelity DNA polymerase | Phusion | F-530 | |
Agarose | Melford | MB1200 | |
DNA purification kit | MoBio | 12100-300 | |
Restriction endonucleases | NEB | ||
T4 ligase | Thermo Scientific | EL0011 | |
Luria Bertani broth | Invitrogen | 12795-027 | |
MES | Sigma | M8250 | |
Kanamycin sulfate | Sigma | 60615 | |
Ampicillin | Sigma | A9518 | |
GeneJET plasmid miniprep kit | Thermo Scientific | K0503 | |
14 mL round-bottom tube | BD falcon | 352059 | |
GoTaq G2 Flexi DNA polymerase | Promega | M7805 | |
425-600 µm glass beads | Sigma | G8772 | |
Glycerol | Sigma | G5516 | |
DMSO | Sigma | D8418 | |
Fluorescent bulbs | Gro-Lux | 69 | |
HT multitron photobioreactor | Infors |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved