JoVE Logo
Faculty Resource Center

Sign In

Abstract

Neuroscience

Stripe Assay to Study the Attractive or Repulsive Activity of a Protein Substrate Using Dissociated Hippocampal Neurons

Published: June 19th, 2016

DOI:

10.3791/54096

1Anatomy and Neuroscience, Hamamatsu University School of Medicine, 2Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT)

Growing axons develop a highly motile structure at their tip, termed the growth cone. The growth cone contacts extracellular environmental cues to navigate axonal growth. Netrin, slit, semaphorin, and ephrins are known guidance molecules that can attract or repel axons upon binding to receptors and co-receptors on the axon. The activated receptors initiate various signaling molecules in the growth cone that alter the structure and movement of the neuron. Here, we describe the detailed protocol for a stripe assay to assess the ability of a guidance molecule to attract or repel neurons. In this method, dissociated hippocampal neurons from E15.5 mice are cultured on laminin-coated dishes processed with alternating stripes of ectodomain of fibronectin and leucine-rich transmembrane protein-2 (FLRT2) and control immunoglobulin G (IgG) fragment crystallizable region (Fc) protein. Both axons and cell bodies were strongly repelled from the FLRT2-coated stripe regions after 24 h of culture. Immunostaining with tau1 showed that ~90% of the neurons were distributed on the Fc-coated stripes compared to the FLRT2-Fc-coated stripes (~10%). This result indicates that FLRT2 has a strong repulsive effect on these neurons. This powerful method is applicable not only for primary cultured neurons but also for a variety of other cells, such as neuroblasts.

Tags

Keywords Stripe Assay

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved