A subscription to JoVE is required to view this content. Sign in or start your free trial.
We simulated a Precambrian ferruginous marine upwelling system in a lab-scale vertical flow-through column. The goal was to understand how geochemical profiles of O2 and Fe(II) evolve as cyanobacteria produce O2. The results show the establishment of a chemocline due to Fe(II) oxidation by photosynthetically produced O2.
A conventional concept for the deposition of some Precambrian Banded Iron Formations (BIF) proceeds on the assumption that ferrous iron [Fe(II)] upwelling from hydrothermal sources in the Precambrian ocean was oxidized by molecular oxygen [O2] produced by cyanobacteria. The oldest BIFs, deposited prior to the Great Oxidation Event (GOE) at about 2.4 billion years (Gy) ago, could have formed by direct oxidation of Fe(II) by anoxygenic photoferrotrophs under anoxic conditions. As a method for testing the geochemical and mineralogical patterns that develop under different biological scenarios, we designed a 40 cm long vertical flow-through column to simulate an anoxic Fe(II)-rich marine upwelling system representative of an ancient ocean on a lab scale. The cylinder was packed with a porous glass bead matrix to stabilize the geochemical gradients, and liquid samples for iron quantification could be taken throughout the water column. Dissolved oxygen was detected non-invasively via optodes from the outside. Results from biotic experiments that involved upwelling fluxes of Fe(II) from the bottom, a distinct light gradient from top, and cyanobacteria present in the water column, show clear evidence for the formation of Fe(III) mineral precipitates and development of a chemocline between Fe(II) and O2. This column allows us to test hypotheses for the formation of the BIFs by culturing cyanobacteria (and in the future photoferrotrophs) under simulated marine Precambrian conditions. Furthermore we hypothesize that our column concept allows for the simulation of various chemical and physical environments — including shallow marine or lacustrine sediments.
The Precambrian (4.6 to 0.541 Gy ago) atmosphere experienced a gradual build-up of photosynthetically produced oxygen (O2), perhaps punctuated by step changes at the so-called "Great Oxidation Event" (GOE) at approximately 2.4 Gy ago, and again in the Neoproterozoic (1 to 0.541 Gy ago) as atmospheric O2 approached modern levels1. Cyanobacteria are the evolutionary remnants of the first organisms capable of oxygenic photosynthesis2. Geochemical evidence and modeling studies support the role of shallow coastal environments in harboring active communities of cyanobacteria or organisms capable of oxygenic photosynthesis ....
1. Preparation of Culturing Medium
Note: Information on the required equipment, chemicals and supplies for the preparation of the culture medium is listed in Table 1. Italic alphanumerical codes in brackets refer to the equipment itemized in Table 2 and shown in Figure 1.
Control experiment
Abiotic control experiments (10 days) demonstrated consistently low oxygen concentrations (O2 <0.15 mg/L) with no significant fluctuations in the Fe(II)-profile throughout the upwelling water column. The formation of precipitates (presumably Fe(III)(oxyhydr-)oxides) in the medium reservoir and the slight decrease in the overall Fe(II) concentration from 500 µM to.......
Microbial communities in the Precambrian ocean were regulated by, or modified as a result of, their activity and the prevailing geochemical conditions. In interpreting the origins of BIF, researchers generally infer the presence or activity of microorganisms based on the sedimentology or geochemistry of BIF, e.g., Smith et al.23 and Johnson et al.24. The study of modern organisms in modern environments that have geochemical analogs to ancient environments is also a valuabl.......
Authors have nothing to disclose.
Mark Nordhoff assisted in the design and implementation of tubing connections. Ellen Struve helped to select and acquire equipment used.
....Name | Company | Catalog Number | Comments |
Widdel flask (5 L) | Ochs | 110015 | labor-ochs.de |
Glass bottles (5 L) | Rotilabo | Y682.1 | carlroth.com |
Glass pipettes (5 mL) | 51714 | labor-ochs.de | |
0.22 µm Steritop filter unit (0.22 µm Polyethersulfone membrane) | Millipore | X337.1 | carlroth.com |
Aluminum foil | |||
Sterile Luer Lock glass syringe, filled with cotton | C681.1 | carlroth.com | |
Luer Lock stainless steel needles (150 mm, 1.0 mm ID) | 201015 | labor-ochs.de | |
NaCl | Sigma | 433209 | sigmaaldrich.com |
MgSO4 | Sigma | 208094 | sigmaaldrich.com |
CaCl2 | Sigma | C4901 | sigmaaldrich.com |
NH4Cl | Sigma | A9434 | sigmaaldrich.com |
KH2PO4 | Sigma | P5655 | sigmaaldrich.com |
KBr | Sigma | P3691 | sigmaaldrich.com |
KCl | Sigma | P9541 | sigmaaldrich.com |
Glass cylinder | Y310.1 | carlroth.com | |
Glass wool | 7377.2 | carlroth.com | |
Glass beads (ø 0.55 - 0.7 mm) | 11079105 | biospec.com | |
Butyl rubber stopper (ø 1.2 cm) | 271024 | labor-ochs.de | |
Petri Dish, glass (ø 8.0 cm) | T939.1 | carlroth.com | |
Polymers glue | OTTOSEAL S68 | adchem.de | |
Optical oxygen sensor foil (for oxygen analysis, see below) | – on request – | presens.de | |
Rubber tubing (35 mm, 7 mm ID) | 770350 | labor-ochs.de | |
Luer Lock tube connector (3.0 mm, luer lock male = LLM) | P343.1 | carlroth.com | |
Luer Lock tube connector (3.0 mm, luer lock female = LLF) | P335.1 | carlroth.com | |
Rubber tubing (25 mm, 0.72 mm ID) | 2600185 | newageindustries.com | |
Rubber tubing (50 mm, 7 mm ID) | 770350 | labor-ochs.de | |
Luer Lock stainless steel needle (150 mm, 1.0 mm ID) | 201015 | labor-ochs.de | |
Luer Lock glass syringe (10 mL) | C680.1 | carlroth.com | |
Loose cotton | – | ||
Butyl rubber stopper (ø 1.75 cm) | 271050 | labor-ochs.de | |
Stainless steel needle (40 mm, 1.0 mm ID) | Sterican | 4665120 | bbraun.de |
Luer Lock stainless steel needle (150 mm, 1.5 mm ID) | 201520 | labor-ochs.de | |
position: Luer Lock female connector part at C.7 | |||
Polymers glue | OTTOSEAL S68 | adchem.de | |
Stainless steel needle (120 mm, 0.7 mm ID) | Sterican | 4665643 | bbraun.de |
Rubber tubing (40 mm, 0.74 mm ID) | 2600185 | newageindustries.com | |
Heat shrink tubing (35 mm, 3 mm ID shrunk) | 541458 - 62 | conrad.de | |
Tube clamp | STHC-C-500-4 | tekproducts.com | |
Luer Lock tube connector (1.0 mm, LLF) | P334.1 | carlroth.com | |
Luer Lock plastic cap (LLM) | CT69.1 | carlroth.com | |
Glass bottle (5 L) | Rotilabo | Y682.1 | carlroth.com |
Butyl rubber stopper (for GL45) | 444704 | labor-ochs.de | |
Stainless steel capillary (300 mm, 0.74 mm ID) | 56736 | sigmaaldrich.com | |
Stainless steel capillary (50 mm, 0.74 mm ID) | 56737 | sigmaaldrich.com | |
Shrink tubing (35 mm, 3 mm ID shrunk) | 541458 - 62 | conrad.de | |
Rubber tubing (100 mm, 0.74 mm ID) | 2600185 | newageindustries.com | |
Luer Lock tube connector (1.0 mm, LLF) | P334.1 | carlroth.com | |
Luer Lock glass syringe (10 mL) | C680.1 | carlroth.com | |
Loose cotton | – | ||
Butyl rubber stopper (ø 1.75 cm) | 271050 | labor-ochs.de | |
Stainless Steel needle (40 mm, 0.8 mm ID) | Sterican | 4657519 | bbraun.de |
Luer Lock glass syringe (5 mL) | C679.1 | carlroth.com | |
Butyl rubber stopper (ø 1.75 mm) | 271050 | labor-ochs.de | |
Stainless steel needle (40 mm, 0.8 mm ID) | Sterican | 4657519 | bbraun.de |
Rubber tubing (40 mm, 0.74 mm ID) | 2600185 | newageindustries.com | |
Glass bottle (2 L) | Rotilabo | X716.1 | carlroth.com |
Butyl rubber stopper (for GL45) | 444704 | labor-ochs.de | |
Stainless steel capillary (50 mm, 0.74 mm ID) | 56736 | sigmaaldrich.com | |
Rubber tubing (30 mm x 0.74 mm ID) | 2600185 | newageindustries.com | |
Rubber tubing (100 mm x 0.74 mm ID) | 2600185 | newageindustries.com | |
Luer Lock tube connector (1.0 mm, LLF) | P334.1 | carlroth.com | |
Luer Lock 3-way connector (LLF, 2x LLM) | 6134 | cadenceinc.com | |
Light source | Samsung | SI-P8V151DB1US | samsung.com |
Peristalic pump | Ismatec | EW-78017-35 | coleparmer.com |
Pumping tubing (0.89 mm ID) | EW-97628-26 | coleparmer.com | |
Stainless steel capillary (200 mm, 0.74 mm ID) | 56736 | sigmaaldrich.com | |
Stainless steel capillary (400 mm, 0.74 mm ID) | 56737 | sigmaaldrich.com | |
Supel-Inert Foil (Tedlar - PFC) gas pack (10 L) | 30240-U | sigmaaldrich.com | |
Rubber tube (30 mm, 6 mm ID) | 770300 | labor-ochs.de | |
Luer Lock tube connector (3.0 mm, LLM) | P343.1 | carlroth.com | |
Luer Lock tube connector (3.0 mm, LLF) | P335.1 | carlroth.com | |
Gas-tight syringe (20 mL) | C681.1 | carlroth.com | |
Bunsen burner | – | ||
Fiber optic oxygen meter for oxygen quantification | Presens | TR-FB-10-01 | presens.de |
Vacuum pump | – | ||
Silicone glue for oxygen optodes | Presens | PS1 | presens.de |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved