A subscription to JoVE is required to view this content. Sign in or start your free trial.
Three heat precipitation methods are presented that effectively remove more than 90% of host cell proteins (HCPs) from tobacco extracts prior to any other purification step. The plant HCPs irreversibly aggregate at temperatures above 60 °C.
Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy.
Modern healthcare systems increasingly depend on biopharmaceutical proteins 1. Producing these proteins in plants is advantageous due to the low pathogen burden and greater scalability compared to conventional expression systems 2-4. However, the downstream processing (DSP) of plant-derived pharmaceuticals can be challenging because the disruptive extraction procedures result in a high particle burden, with turbidities exceeding 5,000 nephelometric turbidity units (NTUs), and host cell protein (HCP) concentrations often exceeding 95% [m/m] 5,6.
Elaborate clarification procedures are required to remove disper....
1. Cultivate the Tobacco Plants
Heat precipitation of tobacco host cell proteins by blanching
The blanching procedure described in section 2. was successfully used to precipitate HCPs from tobacco leaves with 70 °C, reducing the TSP by 96 ± 1% (n = 3) while recovering up to 51% of the Vax8 target protein, thus increasing its purity from 0.1% to 1.2% before chromatographic separation 16. It was also possible to recover 83 ± 1% (n =3) of the fluorescent protein DsRed, increasing it.......
The three methods for heat precipitation described above can effectively remove tobacco HCPs prior to any chromatographic purification step 16,17. They complement other strategies that aim to increase initial product purity, e.g., guttation 29, rhizosecretion 30 or centrifugal extraction 31,32, all of which are limited to secreted proteins. However, the heat-based methods can only be used in a meaningful way if the target protein to be purified can withstand the minimu.......
The authors have no conflicts of interest to disclose.
We would like to acknowledge Dr. Thomas Rademacher, Alexander Boes and Veronique Beiß for providing the transgenic tobacco seeds, and Ibrahim Al Amedi for cultivating the tobacco plants. The authors wish to thank Dr. Richard M. Twyman for editorial assistance as well as Güven Edgü for providing the MSP1-19 reference. This work was funded in part by the European Research Council Advanced Grant ''Future-Pharma'', proposal number 269110, the Fraunhofer-Zukunftsstiftung (Fraunhofer Future Foundation) and Fraunhofer-Gesellschaft Internal Programs under Grant No. Attract 125-600164.
....Name | Company | Catalog Number | Comments |
2100P Portable Turbidimeter | Hach | 4650000 | Turbidimeter |
Amine Coupling Kit | GE Healthcare | BR100050 | SPR chip coupling kit |
Autoclaving basket | Nalgene | 6917-0230 | Basket for leaf blanching |
Biacore T200 | GE Healthcare | 28-9750-01 | SPR device |
Bio Cell Analyser BCA 003 R&D with 3D ORM | Sequip | n.a. | Particle size analyzer |
Blender | Waring | 800EG | Blender |
BP-410 | Furh | 2632410001 | Bag filter |
Centrifuge 5415D | Eppendorf | 5424 000.410 | Centrifuge |
Centrifuge tube 15 mL | Labomedic | 2017106 | Reaction tube |
Centrifuge tube 50 mL self-standing | Labomedic | 1110504 | Reaction tube |
CM5 chip | GE Healthcare | BR100012 | Chip for SPR measurements |
Cuvette 10x10x45 | Sarsted | 67.754 | Cuvette for Zetasizer Nano ZS |
Design-Expert(R) 8 | Stat-Ease, Inc. | n.a. | DoE software |
Disodium phosphate | Carl Roth GmbH | 4984.3 | Media component |
Ferty 2 Mega | Kammlott | 5.220072 | Fertilizer |
Forma -86C ULT freezer | ThermoFisher | 88400 | Freezer |
Greenhouse | n.a. | n.a. | For plant cultivation |
Grodan Rockwool Cubes 10x10cm | Grodan | 102446 | Rockwool block |
Twentey-loop heat exchanger (4.8 m length) | n.a. (custom design) | n.a. | Heat exchanger |
HEPES | Carl Roth GmbH | 9105.3 | Media component |
K200P 60D | Pall | 5302303 | Depth filter layer |
KS50P 60D | Pall | B12486 | Depth filter layer |
Lauda E300 | Lauda Dr Wobser GmbH | Z90010 | Water bath thermostat |
L/S 24 | Masterflex | SN-06508-24 | Tubing |
mAb 5.2 | American Type Culture Collection | HB-9148 | Vax8 specific antibody |
Masterflex L/S | Masterflex | HV-77921-75 | Peristaltic pump |
Miracloth | Labomedic | 475855-1R | Filter cloth |
MultiLine Multi 3410 IDS | WTW | WTW_2020 | pH meter / conductivity meter |
Osram cool white 36 W | Osram | 4930440 | Light source |
Phytotron | Ilka Zell | n.a. | For plant cultivation |
Sodium disulfit | Carl Roth GmbH | 8554.1 | Media component |
Sodium chloride | Carl Roth GmbH | P029.2 | Media component |
Stainless-steel vessel; 0.7-kg 2.0-L; height 180 mm; diameter 120 mm | n.a. (custom design) | n.a. | Container for heat precipitation |
Synergy HT | BioTek | SIAFRT | Fluorescence and spectrometric plate reader |
VelaPad 60 | Pall | VP60G03KNH4 | Filter housing |
Zetasizer Nano ZS | Malvern | ZEN3600 | DLS particle size distribution measurement |
Zetasizer Software v7.11 | Malvern | n.a. | Software to operate the Zetasizer Nano ZS device |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved