JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol provides step-by-step guidelines for setting up competitive mouse bone marrow transplant experiments to study hematopoietic stem/progenitor cell function without prior purification of stem cells by cell sorting.

Abstract

The gold standard definition of a hematopoietic stem cell (HSC) is a cell that when transferred into an irradiated recipient will have the ability to reestablish blood cell production for the lifespan of the recipient. This protocol explains how to set up a functional assay to compare the HSC capacities of two different populations of cells, such as bone marrow from mice of two different genotypes, and how to analyze the recipient mice by flow cytometry. The protocol uses HSC equivalents rather than cell sorting for standardization and discusses the advantages and disadvantages of both approaches. We further discuss different variations to the basic protocol, including serial transplants, limiting dilution assays, homing assays and non-competitive transplants, including the advantages and preferred uses of these varied approaches. These assays are central for the study of HSC function and could be used not only for the investigation of fundamental HSC intrinsic aspects of biology but also for the development of preclinical assays for bone marrow transplant and HSC expansion in culture.

Introduction

Hematopoiesis is a regenerative process that ensures the replenishing of blood cells that have been lost through injury, radiation and cell death. This process is ensured by hematopoietic stem cells (HSC) that largely reside in the adult bone marrow. In addition, hematopoietic stem cells can be used for therapeutic purposes in autoimmune disorders, hematological malignancies and immunodeficiencies1. There is thus a need to better understand the mechanisms that regulate HSC function, including their proliferative expansion and their ability to reach and engraft the recipient bone marrow after transplant. Although recent studies have reported several cell surface markers, including the SLAM family members CD150 and CD48, to prospectively enrich adult HSCs and fetal HSCs to approximately 50% purity2-4, the gold standard measure for functional HSCs remains an in vivo repopulating assay to determine their ability to re-establish blood cell production in an irradiated host5.

The in vivo clonal repopulating assay was initially developed by Till and McCulloch6 and has since been refined and expanded. As originally defined, HSCs ensure lifelong blood cell production through self-renewal and differentiation. The transfer of HSCs into an irradiated recipient thus allows us to assess: their ability to differentiate through the analysis of the different blood cell lineages (T lymphocytes, B lymphocytes, granulocytes, monocytes) and their capacity for self-renewal through serial transplantation. The assay would usually involve the comparison of the functionality and/or quantity of two populations of HSCs, e.g., cells coming from two mice of different genotypes or cells that have been treated or untreated with different factors that could influence the maintenance or expansion of HSCs in culture. Donor chimerism, or the contribution of transferred donor HSCs to blood cell production can then be determined by flow cytometry analysis in the peripheral blood and bone marrow using cell surface markers or other methods that will distinguish donor cells from the recipient, or host. The most widely used markers are certainly the two alleles for the gene Ptprc or CD45 leukocyte antigen7 that we have chosen for the examples provided below.

The clonal repopulation assay can be either competitive or non-competitive. In a non-competitive setting, control and test HSCs are transferred into separate recipient mice and the outcome for each cell type will be independent of the other. In a competitive setting, the function of both test and control HSCs is measured against a population of competitor HSCs. The protocol described here uses the competitive setting but can also be adapted for non-competitive situations. Both approaches have their advantages and limitations, and we will compare them in detail in the discussion. We also describe different approaches to ensure equity in the number of transplanted HSCs, explain how to adapt the assay for the quantification of HSCs by limiting dilution assay (LDA), and provide examples of both successful and unsuccessful transplants for the interpretation of results.

Access restricted. Please log in or start a trial to view this content.

Protocol

All procedures described in this protocol have been approved by the institutional animal ethics committee and follow the Canadian Council on Animal Care guidelines.

Note: To maintain sterile/specific pathogen-free housing conditions, conduct all procedures involving direct handling of live mice inside a biological safety cabinet or a laminar flow hood. Clean or sterilize cages, restraining devices, housing materials, chow and water provided to the animals appropriately. Use only sterile, disposable needles for the injections and for blood sampling. Aseptic technique is crucial during preparation of the graft.

1. Preparation of Recipient Mice

  1. Identify recipient mice with ear notches (or other method approved by the local animal ethics committee8) to enable individual follow up of peripheral blood and bone marrow reconstitution over time. Weigh the mice for post-transplant follow-up. Use recipient mice that are between 7 and 12 weeks old (less than 25 g).
    Note: In the provided example, CD45.1+ CD45.2+ recipient mice were bred in house by crossing C57Bl/6 mice with congenic B6.SJL mice.
  2. Irradiate recipient mice with two doses of 450 rad to destroy hematopoietic activity. Give the first dose the day before transplantation and the second 1-2 hr before transplantation.
    Note: X-ray or gamma rays can both be used depending on the availability of appropriate facilities.

2. Preparation of Donor and Competitor Bone Marrow Cells

  1. Euthanize donor (test and control; CD45.2+) and competitor (CD45.1+; B6.SJL) mice by CO2 asphyxiation followed by cervical dislocation or using methods approved by the local animal ethics committee.
  2. Place mice on their back, legs open wide, in an empty petri dish or on a sterile gauze (to keep the work surface clean) inside a biological safety cabinet. Wet the skin and fur with 70% ethanol/30% H2O (v/v).
  3. Cut off the foot with a surgical blade or sharp scissors. Cut open the skin along the leg and pull away the skin using serrated forceps. Cut away excess muscle.
  4. Dislocate femur by pulling on the leg bone and using scissor blades against the pelvic bones as a counter force. Detach tibia and femur from the kneecap and remove remaining bits of muscle and tendons. Place the bones in 2-3 ml sterile phosphate buffered saline (PBS) in a 6-well tissue culture plate.
  5. Collect bone marrow cells by flushing the bones with 5 ml sterile PBS.
    1. Hold the bone gently with forceps and insert a 25 G needle attached to a filled 1 ml syringe to one end of the bone. Press the plunger and collect the cells in a 15 ml conical tube. Repeat as needed until the center of the bone is white.
  6. Dissociate the cells by repeated passing through the needle to obtain a single cell suspension. Avoid bubbles and excess force. Note: Use a slightly larger needle (22 G) to improve cell viability at this step.
  7. Pass the cells through a 70 µm nylon strainer to ensure uniform cell suspension and to remove debris and clumps.
  8. Remove an aliquot for cell counting using a hemocytometer. Centrifuge the remaining cell suspension at 200 x g for 5 min at 4 °C. Readjust cell density as required in sterile PBS (108 cells/ml). Keep the cells on ice.

3. Establishing Donor Cell HSC Equivalents

  1. Transfer the equivalent of 3 x 106 cells (30 µl) into a 5 ml round bottom polystyrene tube for flow cytometry staining. Add an equal volume of unlabeled antibody against CD16/CD32 to block non-specific staining (diluted in staining buffer (PBS supplemented with 0.1% bovine serum albumin (BSA) and 1 mM EDTA) for a final concentration of 2.5 µg/ml). Incubate 5 min at RT.
  2. Add 90 µl fluorochrome-conjugated antibody master mix prepared in staining buffer: biotinylated Lineage cocktail (B220, CD3e, CD11b, GR1, Ter119), Sca1, CD117, CD135, CD150. Incubate on ice for 30 min, protected from light.
    Note: Appropriate dilutions should be determined for each lot of antibody. See Table of Materials for dilutions used in this study.
  3. Add 2 ml staining buffer to the cells, vortex and centrifuge at 200 x g for 5 min at 4 °C to remove unbound antibody. Decant supernatant and resuspend pellet by flicking.
  4. Add 10 µl fluorochrome-conjugated streptavidin diluted in staining buffer (see Materials Table). Incubate on ice for 20 min, protected from light. Wash as in step 3.3 to remove unbound streptavidin.
  5. Acquire the cell samples using a flow cytometer with at least six detectors9. Determine the frequency of Lin- Sca1+ CD117+ CD135- CD150+ cells (estimated HSCs) in each sample using the analysis template shown in Figure 2 and as previously reported10,11.
    Note: The frequency of functional HSCs within that population can be estimated between 1/3 and 1/52,12.
  6. Establish estimated HSC equivalents for all samples11, using one sample (typically, the competitor, B6.SJL CD45.1+ in this example) as baseline as detailed below and in Figure 2.
    1. Calculate the numbers of cells required using the following formulas:
      #transplanted HSCs / recipient = 5 x 105 cells x estimated HSC frequency (as determined for baseline sample; this number is usually between 75 and 125 for wildtype C57Bl/6 mice)10-12.
      Note: In Figure 2, for Sample A, the result is 139 HSCs.
      total # transplanted cells (for other samples; e.g. Sample B in Figure 2) = # transplanted HSCs/HSC frequency.
      Note: In Figure 2, for Sample B, the result is 197,826 (or approximately 2 x 105) total bone marrow cells.
  7. Calculate the total numbers of cells required per graft recipient for each sample using the results obtained above.
    Note: This number should be 5 x 105 for the baseline sample (competitor).
    1. Multiply the number obtained from step 3.7 by the number of recipient mice and add enough cells for at least two additional mice to compensate for the dead volume in the syringe.
  8. Mix competitor (e.g., CD45.1+) and test cells (CD45.2+) in 1:1 HSC equivalent ratio as calculated in step 3.6 and adjust the final volume for 200 µl per injection using sterile PBS.
    Note: For a group of five recipient mice the suggested volume would thus be at least 1.4 ml, containing 3.5 x 106 competitor bone marrow cells (or 973 estimated HSCs for Sample A in Figure 2), and the equivalent number of test cells (in Figure 2, the equivalent for Sample B would be 197,826 x 7 = 1,384,782 bone marrow cells).

4. Bone Marrow Transplants

  1. Warm up the recipient mice irradiated in step 1.2 with a red heat lamp to ensure dilation of the blood vessels and to make the lateral tail veins more visible.
  2. Prepare a 1 ml tuberculin syringe equipped with a 27 G needle (or smaller). Aspirate approximately 750 µl of the prepared cell suspension (for 3 recipient mice). Make sure there are no air bubbles in the syringe.
  3. Insert the mouse into a restraining device. Examine the tail and look for the lateral tail veins that should be clearly visible on both sides of the tail. Wipe the injection site with ethanol. Insert the needle bevel up, parallel to the skin and gently press the plunger. Injection should be easy. If force is required, the needle is not in the vein.
    Note: Older mice have thicker skin, which may make finding the vein more difficult. If the needle is not in the vein, reinsert the needle proximal to the initial injection site.
  4. Remove the needle and press the injection site with sterile gauze for a few seconds to stop bleeding. Transfer the mouse into a clean cage.
    Note: Use the same syringe and needle for three injections, after which the needle may become too dull.
  5. For post-transplant follow-up, inject 1 ml sterile PBS subcutaneously to rehydrate the mice for the first five days. Add antibiotics in drinking water to prevent infections (if required; optional). Weigh mice every two to three days for the first three weeks and euthanize mice that have lost more than 15-20% their pre-transplant body weight (or as determined by the local animal ethics committee).

5. Analysis of Peripheral Blood

  1. Collect a drop of blood (approx. 50-100 µl) into EDTA tubes.
    1. To collect blood from the mandibular vein, use a lancet or a 22 G needle to pierce the facial skin near the hairless spot located under the jawbone and place the collecting tube to receive the drop of blood13. Collect blood at 4, 8, 12 and 16 weeks after transplant to follow multi-lineage reconstitution.
  2. Add 1 ml freshly prepared RT red blood cell lysis buffer (9 parts 0.16 M NH4Cl + 1 part 0.17 M Tris-HCl pH 7.65) to the drop of blood collected in step 5.1.1. Mix and transfer sample to a 5 ml round-bottom polystyrene tube suitable for flow cytometry. Let stand for 4 min at RT.
  3. Add 4 volumes of ice-cold PBS. Mix by turning end-to-end and transfer immediately on ice. Centrifuge 10 min at 200 x g at 4 °C.
  4. Decant supernatant and resuspend pellet by flicking. Supernatant should be clear and red. Add 2 ml staining buffer and vortex briefly. Centrifuge 5 min at 200 x g at 4 °C.
  5. Decant supernatant and resuspend pellet by flicking.
  6. Proceed with flow cytometry staining using the general protocol detailed in steps 3.1 to 3.3 and the following antibodies for the master mix: CD45.1, CD45.2, CD3e, CD19, GR1.
  7. Acquire the cell samples using a flow cytometer with at least six detectors9. Determine the frequency of donor-derived cells for each lineage (CD19+ B lymphocytes, CD3e+ T lymphocytes, GR1bright granulocytes) in each sample using the analysis template provided in Figure 3 and as published10,11.

6. Analysis of Bone Marrow Reconstitution

  1. Collect bone marrow cells as detailed in section 2. Stain the cells for flow cytometry analysis using the general protocol detailed in steps 3.1 to 3.3 and the following antibodies for the master mix: Lineage cocktail, Sca1, CD117, CD135, CD150, CD45.1, CD45.2. Detect lineage cocktail antibodies using fluorochrome-conjugated streptavidin as described in step 3.4.
  2. Acquire cell samples using a flow cytometer with at least eight detectors9. If only six are available, add CD135 to the same channel as lineage panel as CD135+ cells will be excluded. Determine the frequency of donor-derived Lin- Sca1+ CD117+ CD135- CD150+ HSCs in each sample using the analysis template provided in Figure 4 and as published10.

Access restricted. Please log in or start a trial to view this content.

Results

A general description of the competitive transplant setting, including secondary transplants (discussed further below) can be found in Figure 1. A representative analysis for pre-transplant bone marrow HSCs can be found in Figure 2. More detailed information on the exclusion of doublets and dead cells can be found elsewhere9.

Figures 3 and 4 provide e...

Access restricted. Please log in or start a trial to view this content.

Discussion

The protocol described here is designed to evaluate the relative fitness of donor (test) HSCs against known competitor HSCs. The situation of competition increases the relative sensitivity of the assay (more likely to detect moderate decreases in stem cell fitness) and provides an internal technical control for the efficacy of irradiation and injection. However, it should not be used as an absolute measure of HSC fitness; a decrease in competitive reconstitution does not automatically mean that the HSCs would not perform...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgements

We are grateful to Roxann Hétu-Arbour for assistance with the figure design and demonstration of the procedures. Research in the lab was supported by a Transition award from the Cole Foundation, Discovery grant no. 419226-2012 from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI Leaders Fund grant no. 31377). KMH is a Chercheur-Boursier Junior for the Fonds de recherche du Québec - Santé (FRQS).

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Microtainer tubes with K2EDTABD Biosciences365974
20 G needleBD SyringeFor blood sampling from the mandibular vein
LabQuake Shaker rotisserieThermo  ScientificC415110
Purified anti-mouse CD16/CD32 (clone 2.4G2, Fc Block)BD Biosciences5531422.50 μg/ml
Pe-Cy7-conjugated anti-mouse CD3e (clone 145-2C11)eBioscience25-00310.25 μg/ml
PE-conjugated anti-mouse CD19 (clone 1D3)eBioscience12-01930.25 μg/ml
APC-eFluor780 (APC-Cy7 equivalent)-conjugated anti-mouse GR1 (clone RB6-8C5)eBioscience47-59310.25 μg/ml
FITC-conjugate anti-mouse CD45.1 (clone A20)eBioscience11-04532.50 μg/ml
eFluor450-conjugated anti-mouse CD45.2 (clone 104)eBioscience48-04541.00 μg/ml
Biotinylated anti-human/mouse CD45R (B220) (clone RA3-6B2)eBioscience13-04521.25 μg/ml
Biotinylated anti-mouse CD3e (clone 145-2C11)eBioscience13-00311.25 μg/ml
Biotinylated anti-mouse CD11b (clone M1/70)eBioscience13-01121.25 μg/ml
Biotinylated anti-mouse GR1 (clone RB6-8C5)eBioscience13-59311.25 μg/ml
Biotinylated anti-mouse TER119 (clone TER119)eBioscience13-59210.625 μg/ml
V500 streptavidinBD Biosciences561490.5 μg/ml
PE-conjugated anti-mouse CD117 (clone 2B8)BD Biosciences5533550.25 μg/ml
PE-Cy7-conjugated anti-mouse Ly6A/E (Sca1) (clone D7)BD Biosciences5581620.25 μg/ml
PerCP-eFluor710-conjugated anti-mouse CD135 (clone A2F10)eBioscience46-13510.5 μg/ml
Alexa fluor 647-conjugated anti-mouse CD150 (clone TC15-12F12.2)Biolegend1159180.625 μg/ml BD Biosciences and eBioscience do not carry the same clone
1 ml tuberculin syringe with 27 G needleBD Syringe309623
1 ml tuberculin syringe with 25 G needleBD Syringe309626
70 μm cell strainerBD Falcon352350

References

  1. Li, H. W., Sykes, M. Emerging concepts in haematopoietic cell transplantation. Nat Rev Immunol. 12 (6), 403-416 (2012).
  2. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 121 (7), 1109-1121 (2005).
  3. Kim, I., He, S., Yilmaz, O. H., Kiel, M. J., Morrison, S. J. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood. 108 (2), 737-744 (2006).
  4. Mayle, A., Luo, M., Jeong, M., Goodell, M. A. Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A. 83 (1), 27-37 (2013).
  5. Rossi, L., et al. Less Is More: Unveiling the Functional Core of Hematopoietic Stem Cells through Knockout Mice. Cell Stem Cell. 11 (3), 302-317 (2012).
  6. Till, J. E., McCulloch, E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 14, 213-222 (1961).
  7. Shen, F. W., et al. Cloning of Ly-5 cDNA. Proc Natl Acad Sci U S A. 82 (21), 7360-7363 (1985).
  8. Identification of GM mice. Laboratory Animals. 37 (suppl 1), 33-35 (2003).
  9. Rundberg Nilsson, A., Bryder, D., Pronk, C. J. H. Frequency determination of rare populations by flow cytometry: A hematopoietic stem cell perspective. Cytometry Part A. 83A (8), 721-727 (2013).
  10. Abidin, B. M., Owusu Kwarteng, E., Heinonen, K. M. Frizzled-6 Regulates Hematopoietic Stem/Progenitor Cell Survival and Self-Renewal. J Immunol. 195 (5), 2168-2176 (2015).
  11. Heinonen, K. M., Vanegas, J. R., Lew, D., Krosl, J., Perreault, C. Wnt4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway. PLoS One. 6 (4), e19279(2011).
  12. Oguro, H., Ding, L., Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell. 13 (1), 102-116 (2013).
  13. Golde, W. T., Gollobin, P., Rodriguez, L. L. A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim (NY). 34 (9), 39-43 (2005).
  14. Santaguida, M., et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell. 15 (4), 341-352 (2009).
  15. Czechowicz, A., Kraft, D., Weissman, I. L., Bhattacharya, D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 318 (5854), 1296-1299 (2007).
  16. Zhang, C. C., Lodish, H. F. Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood. 105 (11), 4314-4320 (2005).
  17. Benveniste, P., et al. Intermediate-Term Hematopoietic Stem Cells with Extended but Time-Limited Reconstitution Potential. Cell Stem Cell. 6 (1), 48-58 (2010).
  18. Fazekasde St Groth, B. The evaluation of limiting dilution assays. J Immunol Methods. 49 (2), R11-R23 (1982).
  19. Louis, I., Heinonen, K. M., Chagraoui, J., Vainio, S., Sauvageau, G., Perreault, C. The signaling protein Wnt4 enhances thymopoiesis and expands multipotent hematopoietic progenitors through beta-catenin-independent signaling. Immunity. 29 (1), 57-67 (2008).
  20. Cui, Y. Z., et al. Optimal protocol for total body irradiation for allogeneic bone marrow transplantation in mice. Bone Marrow Transplant. 30 (12), 843-849 (2002).
  21. Benz, C., et al. Hematopoietic Stem Cell Subtypes Expand Differentially during Development and Display Distinct Lymphopoietic Programs. Cell Stem Cell. 10 (3), 273-283 (2012).
  22. Eppert, K., et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 17 (9), 1086-1093 (2011).
  23. McIntosh, B. E., et al. Nonirradiated NOD,B6.SCID Il2rgamma-/- Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports. 4 (2), 171-180 (2015).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Competitive Transplant AssayHematopoietic Stem CellsBone MarrowStem Cell FitnessSelf renewalMixed Bone Marrow ChimerasImmunologyCell SuspensionBiological Safety CabinetSurgical PlatformSterile PBSCell CountingCentrifugationDonor Equivalents

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved