Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Non-stirred precipitation polymerization provides a rapid, reproducible prototyping approach to the synthesis of stimuli-sensitive poly(N-isopropylacrylamide) microgels of narrow size distribution. In this protocol synthesis, light scattering characterization and single particle fluorescence tracking of these microgels in a wide-field microscopy setup are demonstrated.

Abstract

Stimuli-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels have various prospective practical applications and uses in fundamental research. In this work, we use single particle tracking of fluorescently labeled PNIPAM microgels as a showcase for tuning microgel size by a rapid non-stirred precipitation polymerization procedure. This approach is well suited for prototyping new reaction compositions and conditions or for applications that do not require large amounts of product. Microgel synthesis, particle size and structure determination by dynamic and static light scattering are detailed in the protocol. It is shown that the addition of functional comonomers can have a large influence on the particle nucleation and structure. Single particle tracking by wide-field fluorescence microscopy allows for an investigation of the diffusion of labeled tracer microgels in a concentrated matrix of non-labeled microgels, a system not easily investigated by other methods such as dynamic light scattering.

Introduction

Stimuli-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels 1,2 have attracted continuous interest over the past two decades due to their potential in various smart applications. Demonstrated use cases include switchable emulsion stabilizers 3-8, microlenses 9, cell culture substrates for easy cell harvesting 10,11, and smart carriers for low molecular weight compounds and other biomedical uses 12. From a fundamental research point of view these particles have been proven to be useful for investigating subjects such as colloidal interactions 13-15 and polymer-solvent interactions 16-1....

Protocol

1. Microgel Synthesis

NOTE: N-isopropylacrylamide (NIPAM) was recrystallized from n-hexane. Other reagents were used as received.

  1. Conventional Batch Synthesis of Poly(NIPAM) Matrix Microgels
    1. Dissolve 1.8 g NIPAM and 24 mg N,N'-bisacrylamide (BIS) in 245 ml filtered (0.2 µm regenerated cellulose (RC) membrane filter) double distilled water in a 500 ml three-neck round bottom flask equipped with a reflux condenser, a stirrer and a rubber septum.
    2. Insert a thermometer and a 120 mm needle for the nitrogen input through the septum.
    3. Heat the solution to 60 °C, while stir....

Representative Results

The number of PNIPAM microgel particles in the batch, and thus the final particle volume, is determined early in the reaction during the nucleation phase 20 Hydrophobic co-monomer dye methacryloxyethyl thiocarbamoyl rhodamine B influences the nucleation by reducing the particle number density in the batch. The decrease in particle concentration for two different initial NIPAM concentrations can be seen as increase in.......

Discussion

Addition of small amounts of functional comonomer can have a significant effect on the particle size and structure of the PNIPAM derived microgels. Simultaneous small-scale test tube polymerization is a good method to account for such changes, and helps to rapidly find the right reactant compositions for target particle size for upscaling the reaction as needed. The mass of the particles is approximately exponentially dependent on the .......

Disclosures

The authors have nothing to disclose.

Acknowledgements

The Deutsche Forschungsgemeinschaft (DFG) is acknowledged for financial support within the Sonderforschungsbereich SFB 985 "Functional Microgels and Microgel Systems".

....

Materials

NameCompanyCatalog NumberComments
AcetoneVWR ChemicalsKRAF13455
BisacrylamidAppliChemA3636
n-HexaneMerck104374
N-IsopropylacrylamideFisher ScientificAC412785000recrystallized from n-hexane
Methacryloxyethyl thiocarbamoyl rhodamine BPolysciences23591
Potassium peroxodisulfateMerck105091
Silicone oil 47 V 350VWR Chemicals83851
TolueneSigma Aldrich244511
F12 Refrigerated/heating circulatorJulabo9116612
MicroscopeOlympusIX83
XY(Z) Piezo SystemPhysik InstrumenteP-545.3R7
100x Oil immersion objectiveOlympusUPLSAPO
QuadLine BeamsplitterAHF AnalysentechnikF68-556T
 Cobolt Jive 150 laserCobolt0561-04-01-0150-300
Multimode FiberThorlabsUM22-600
iXON Ultra 897 EMCCD cameraAndorDU-897U-CS0-BV
Laser goniometerSLS SystemtechnikMark III
CF40 Cryo-compact circulatorJulabo9400340
Laser goniometer system ALV GmbHALV / CGS-8F
Multi-tau corretatorALV GmbHALV-7004
Light scattering electronicsALV GmbHALV / LSE 5004
Photon counting modulePerkinElmerSPCM-CD29692 units in pseudo cross-correlation mode
633 nm HeNe LaserJDS Uniphase1145P
F32 Refrigerated/heating circulatorJulabo9312632

References

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Poly N isopropylacrylamide MicrogelsFluorescence TrackingControlled SynthesisSoft Colloidal ParticlesDynamic BehaviorGlass TransitionWide Field Fluorescence MicroscopyNon stirred Precipitation PolymerizationDynamic Light scatteringNIPAMBISKPSBuchner FunnelCentrifugation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved