JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Immunology and Infection

Fast and Specific Assessment of the Halogenating Peroxidase Activity in Leukocyte-enriched Blood Samples

Published: July 28th, 2016



1Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 2Fraunhofer Institute for Cell Therapy and Immunology (IZI) Leipzig

This protocol describes the quick enrichment of leukocytes from small blood samples for a subsequent specific determination of the halogenating peroxidase activity within the cells. The method can be applied to human and non-human material and may contribute to the evaluation of new inflammatory markers.

In this paper a protocol for the quick and standardized enrichment of leukocytes from small whole blood samples is described. This procedure is based on the hypotonic lysis of erythrocytes and can be applied to human samples as well as to blood of non-human origin. The small initial sample volume of about 50 to 100 µl makes this method applicable to recurrent blood sampling from small laboratory animals. Moreover, leukocyte enrichment is achieved within minutes and with low material efforts regarding chemicals and instrumentation, making this method applicable in multiple laboratory environments.

Standardized purification of leukocytes is combined with a highly selective staining method to evaluate halogenating peroxidase activity of the heme peroxidases, myeloperoxidase (MPO) and eosinophil peroxidase (EPO), i.e., the formation of hypochlorous and hypobromous acid (HOCl and HOBr). While MPO is strongly expressed in neutrophils, the most abundant immune cell type in human blood as well as in monocytes, the related enzyme EPO is exclusively expressed in eosinophils. The halogenating activity of these enzymes is addressed by using the almost HOCl- and HOBr-specific dye aminophenyl fluorescein (APF) and the primary peroxidase substrate hydrogen peroxide. Upon subsequent flow cytometry analysis all peroxidase-positive cells (neutrophils, monocytes, eosinophils) are distinguishable and their halogenating peroxidase activity can be quantified. Since APF staining may be combined with the application of cell surface markers, this protocol can be extended to specifically address leukocyte sub-fractions. The method is applicable to detect HOCl and HOBr production both in human and in rodent leukocytes.

Given the widely and diversely discussed immunological role of these enzymatic products in chronic inflammatory diseases, this protocol may contribute to a better understanding of the immunological relevance of leukocyte-derived heme peroxidases.

Polymorphonuclear leukocytes (PMNs, also called granulocytes) and monocytes represent important cellular components of the innate immune system in the blood1,2. They contribute to the primary defense against pathogens as well as to the activation of the acquired immune system and the initiation of a systemic inflammatory response2-4. Yet especially neutrophils, the most abundant type of granulocytes, and monocytes also significantly contribute to the regulation and termination of acute inflammatory events5. Therefore these cells may also play an important role in chronic inflammatory diseases like rheumatoid arthritis6,7. In....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All human blood samples were obtained from healthy volunteers, and the applied leukocyte enrichment protocol follows the guidelines of ethics commission of the Medical Faculty of the University of Leipzig. The experiments with rat blood were approved by the responsible local ethical committee (Landesdirektion Sachsen, Referat 24), according to the German guidelines on animal care and use.

1. Experimental Setup

NOTE: As the hypotonic lysis procedure for the depletion o.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

As reported previously the method described above turned out to be applicable both to human and to non-human material32. Moreover as shown for mice with asthmatic symptoms the APF staining may be a suitable tool to detect differences in the systemic pro-inflammatory status. Therefore in a subsequent study we used this protocol to repeatedly evaluate the halogenating activity of MPO (and EPO) in female Dark Agouti rats with pristane-induced arthritis (PIA). A representa.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

As neutrophils are the most abundant leukocytes in human blood the isolation of peroxidase-positive cells often only focuses on these cells and includes a separation of neutrophils from other leukocytes by density gradient centrifugation38. Yet as neutrophils are much less abundant in murine blood samples39 for the latter more complicated methods have to be used40. Moreover both methods also lead to the removal of peroxidase-positive monocytes from the samples and, due to the need of larg.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was made possible by funding from the German Federal Ministry of Education and Research (BMBF, 1315883) as well as by the Sächsische Aufbaubank (SAB) project 100116526 from a funding of the European Regional Development Fund (ERDF).


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
15 ml centrifugation tubes VWR/Corning 734-0451 -
1.5 ml sample tubes VWR/Eppendorf 211-2130DE -
Pipettes for volumes up to 5 ml Eppendorf e.g. 3120000070 We are using Eppendorf Resarch plus pipettes with adjustable volumes in the range 1-10 µl, 10-100µl, 100-1000 µl an 500-5000µl
laminar flow bench Thermo Electron Corperation HeraSafe -
Vortex mixer Bender & Hobein AG Vortex Genie 2 -
Tabletop centrifuge Kendro Laboratory Products Laborfuge 400R The centrifuge should be able to be used at 450x g
Small centrifuge eppendorf 5415D The centrifuge should be able to be used at 400x g
Incubator Heraeus cytoperm 2 Settings: 37 °C, 95% humidity, 5 % CO2 content
UV-Vis spectrophotometer Varian Cary 50 bio A spectrum between 200 and 300 nm has to be recorded. Thus quartz cuvettes have to be applied
Flow cytometer Becton, Dickinson BD Facs Calibur Any flow cytometer can be used which is equiped with a laser suitable for the excitation of fluorescein (e.g 488 nm argon laser)
Name Company Catalog Number Comments
Phosphate buffered saline (PBS) amresco K812 sterile solution, ready to use
Sigma-Aldrich P4417 tablets for solving in 200 ml millipore water
Hanks balanced salt solution (HBSS) with Ca(2+) Sigma-Aldrich H1387 970 mg/100 ml, carefully check and adjust the pH value to 7.4
Hydrochloric acid Merck Millipore 1.09057.1000 1M solution
Sodium hydroxide Riedel-deHaën 30620 Solid pellets. For a 1M solution solve 4 g/100 ml Millipore water
Aminophenyl fluorescein Cayman 10157 5 mg/ml solution (11.81 mM) in methyl acetate, aliquotes of e.g. 100 µl should be prepared and stored at -20 °C
Hydrogen peroxide Sigma-Aldrich H1009 This 30% stock solution corresponds to a concentration of about 8.8 M. Further dilutions have to be freshly prepared in distilled water immediately prior to use and quantified by absorbance measurements
4-aminobenzoic acid hydrazide (4-ABAH) Sigma-Aldrich A41909 A first stock solution of 1 M should be prepared in DMSO a second one of 100 mM by 1:10 dilution in HBSS
DMSO VWR chemicals 23500.26 -

  1. Cline, M. J. Monocytes, macrophages, and their diseases in man. J Invest Dermatol. 71 (1), 56-58 (1978).
  2. Wright, H. L., Moots, R. J., Bucknall, R. C., Edwards, S. W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology. 49, 1618-1631 (2010).
  3. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303 (5663), 1532-1535 (2004).
  4. Ishihara, K., Yamaguchi, Y., Okabe, K., Ogawa, M. Neutrophil elastase enhances macrophage production of chemokines in receptor-mediated reaction. Res Commun Mol Pathol Pharmacol. 103 (2), 139-147 (1999).
  5. Henson, P. M. Resolution of inflammation. A perspective. Chest. 99 (3 Suppl), 2S-6S (1991).
  6. Lefkowitz, D. L., Lefkowitz, S. S. Macrophage-neutrophil interaction: a paradigm for chronic inflammation revisited. Immunol Cell Biol. 79 (5), 502-506 (2001).
  7. Wright, H. L., Moots, R. J., Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol. 10 (10), 593-601 (2014).
  8. Kankaanranta, H., et al. Delayed eosinophil apoptosis in asthma. J Allergy Clin Immunol. 106 (1 Pt 1), 77-83 (2000).
  9. Peng, S. L. Neutrophil apoptosis in autoimmunity. J Mol Med. 84 (2), 122-125 (2006).
  10. Simon, H. U. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev. 193, 101-110 (2003).
  11. Vandivier, R. W., Henson, P. M., Douglas, I. S. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest. 129 (6), 1673-1682 (2006).
  12. Loughran, N. B., O'Connor, B., O'Fagain, C., O'Connell, M. J. The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions. BMC Evol Biol. 8, 101-115 (2008).
  13. Zámocký, M., Obinger, C., Torres, E., Ayala, E. M. Ch. 2. Biocatalysis based on heme peroxidases. , 7-35 (2010).
  14. Klebanoff, S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 95 (6), 2131-2138 (1968).
  15. Klebanoff, S. J. Myeloperoxidase: friend and foe. J Leukoc Biol. 77 (5), 598-625 (2005).
  16. Wang, J., Slungaard, A. Role of eosinophil peroxidase in host defense and disease pathology. Arch Biochem Biophys. 445 (2), 256-260 (2006).
  17. Arnhold, J., Furtmuller, P. G., Regelsberger, G., Obinger, C. Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. Eur J Biochem. 268 (19), 5142-5148 (2001).
  18. Bafort, F., Parisi, O., Perraudin, J. P., Jijakli, M. H. Mode of action of lactoperoxidase as related to its antimicrobial activity: a review. Enzyme Res. , 1-13 (2014).
  19. van Dalen, C. J., Whitehouse, M. W., Winterbourn, C. C., Kettle, A. J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J. 327 (Pt 2), 487-492 (1997).
  20. Arnhold, J., Flemmig, J. Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys. 500 (1), 92-106 (2010).
  21. Flemmig, J., Lessig, J., Reibetanz, U., Dautel, P., Arnhold, J. Non-vital polymorphonuclear leukocytes express myeloperoxidase on their surface. Cell Physiol Biochem. 21 (4), 287-296 (2008).
  22. Odobasic, D., Kitching, A. R., Semple, T. J., Holdsworth, S. R. Endogenous myeloperoxidase promotes neutrophil-mediated renal injury, but attenuates T cell immunity inducing crescentic glomerulonephritis. J Am Soc Nephrol. 18 (3), 760-770 (2007).
  23. Odobasic, D., et al. Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood. 121 (20), 4195-4204 (2013).
  24. Ogino, T., et al. Oxidative modification of IkappaB by monochloramine inhibits tumor necrosis factor alpha-induced NF-kappaB activation. Biochim Biophys Acta. 1746 (2), 135-142 (2005).
  25. Flemmig, J., Remmler, J., Zschaler, J., Arnhold, J. Detection of the halogenating activity of heme peroxidases in leukocytes by aminophenyl fluorescein. Free Radic Res. 49 (6), 768-776 (2015).
  26. Flemmig, J., Zschaler, J., Remmler, J., Arnhold, J. The fluorescein-derived dye aminophenyl fluorescein is a suitable tool to detect hypobromous acid (HOBr)-producing activity in eosinophils. J Biol Chem. 287 (33), 27913-27923 (2012).
  27. Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. J., Nagano, T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem. 278 (5), 3170-3175 (2003).
  28. Presentey, B., Szapiro, L. Heriditary deficiency of peroxidase and phospholipids in eosinophil granulocytes. Acta Haematol. 41, 359-362 (1969).
  29. Undritz, E. The Alius-Grignaschi anomaly: the hereditary constitutional peroxidase defect of the neutrophils and monocytes. Blut. 14 (3), 129-136 (1966).
  30. Kutter, D. Prevalence of myeloperoxidase deficiency: population studies using Bayer-Technicon automated hematology. J Mol Med.(Berl). 76 (10), 669-675 (1998).
  31. Lanza, F. Clinical manifestation of myeloperoxidase deficiency. J Mol Med. 76 (10), 676-681 (1998).
  32. Flemmig, J., et al. Rapid and reliable determination of the halogenating peroxidase activity in blood samples. J Immunol Methods. 415, 46-56 (2014).
  33. Flemmig, J., Remmler, J., Rohring, F., Arnhold, J. (-)-Epicatechin regenerates the chlorinating activity of myeloperoxidase in vitro and in neutrophil granulocytes. J Inorg Biochem. 130, 84-91 (2014).
  34. Beers, R. F., Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 195 (1), 133-140 (1952).
  35. Kettle, A. J., Gedye, C. A., Winterbourn, C. C. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem J. 321 (2), 503-508 (1997).
  36. Nakazato, T., et al. Myeloperoxidase is a key regulator of oxidative stress mediated apoptosis in myeloid leukemic cells. Clin Cancer Res. 13 (18), 5436-5445 (2007).
  37. Machwe, M. K. Effect of concentration on fluorescence spectrum of fluorescein. Curr Sci. 39 (18), 412-413 (1970).
  38. Hu, Y., Ashman, R. B. Ch. 7. Leucocytes: Methods and Protocols. , 101-113 (2012).
  39. Zschaler, J., Schlorke, D., Arnhold, J. Differences in innate immune response between man and mouse. Crit Rev Immunol. 34 (5), 433-454 (2014).
  40. Hasenberg, M., et al. Rapid immunomagnetic negative enrichment of neutrophil granulocytes from murine bone marrow for functional studies in vitro and in vivo. PLoS One. 6 (2), e17314 (2011).
  41. Mendez-David, I., et al. A method for biomarker measurements in peripheral blood mononuclear cells isolated from anxious and depressed mice: beta-arrestin 1 protein levels in depression and treatment. Front Pharmacol. 4 (124), 1-8 (2013).
  42. Cotter, M. J., Norman, K. E., Hellewell, P. G., Ridger, V. C. A novel method for isolation of neutrophils from murine blood using negative immunomagnetic separation. Am J Pathol. 159 (2), 473-481 (2001).
  43. Dorward, D. A., et al. Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production. J Leukoc Biol. 94 (1), 193-202 (2013).
  44. Freitas, M., Lima, J. L., Fernandes, E. Optical probes for detection and quantification of neutrophils' oxidative burst. A review. Anal Chim Acta. 649 (1), 8-23 (2009).
  45. Winterbourn, C. C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta. 1840 (2), 730-738 (2014).
  46. Kusenbach, G., Rister, M. Myeloperoxidase deficiency as a cause of recurrent infections. Klin Padiatr. 197 (5), 443-445 (1985).
  47. Zipfel, M., Carmine, T. C., Gerber, C., Niethammer, D., Bruchelt, G. Evidence for the activation of myeloperoxidase by f-Meth-Leu-Phe prior to its release from neutrophil granulocytes. Biochem Biophys Res Commun. 232 (1), 209-212 (1997).
  48. Whiteman, M., Spencer, J. P. Loss of 3-chlorotyrosine by inflammatory oxidants: implications for the use of 3-chlorotyrosine as a bio-marker in vivo. Biochem Biophys Res Commun. 371 (1), 50-53 (2008).
  49. Gerber, C. E., Kuci, S., Zipfel, M., Niethammer, D., Bruchelt, G. Phagocytic activity and oxidative burst of granulocytes in persons with myeloperoxidase deficiency. Eur J Clin Chem Clin Biochem. 34 (11), 901-908 (1996).
  50. Maghzal, G. J., et al. Assessment of myeloperoxidase activity by the conversion of hydroethidine to 2-chloroethidium. J Biol Chem. 289 (9), 5580-5595 (2014).
  51. Shepherd, J., et al. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem Biol. 14 (11), 1221-1231 (2007).
  52. Sun, Z. -. N., Liu, F. -. Q., Chen, Y., Tam, P. K. H., Yang, D. A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. J Am Chem Soc. 10 (11), 2171-2174 (2008).
  53. Kirchner, T., Flemmig, J., Furtmuller, P. G., Obinger, C., Arnhold, J. (-)Epicatechin enhances the chlorinating activity of human myeloperoxidase. Arch Biochem Biophys. 495 (1), 21-27 (2010).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved