JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biochemistry

Automated Acoustic Dispensing for the Serial Dilution of Peptide Agonists in Potency Determination Assays

Published: November 10th, 2016

DOI:

10.3791/54542

1Cardiovascular & Metabolic Disease, MedImmune, 2Lab Automation and Support, MedImmune

Peptide adsorption to plasticware during traditional tip-based serial dilutions can significantly impact potency determination and confound the understanding of structure-activity relationships used for lead identification and lead optimization phases of drug discovery. Here methods for automated acoustic non-contact serial dilution of peptide samples are described.

As with small molecule drug discovery, screening for peptide agonists requires the serial dilution of peptides to produce concentration-response curves. Screening peptides affords an additional layer of complexity as conventional tip-based sample handling methods expose peptides to a large surface area of plasticware, providing an increased opportunity for peptide loss via adsorption. Preventing excessive exposure to plasticware reduces peptide loss via adherence to plastics and thus minimizes inaccuracies in potency prediction, and we have previously described the benefits of non-contact acoustic dispensing for in vitro high-throughput screening of peptide agonists1. Here we discuss a fully integrated automation solution for non-contact acoustic preparation of peptide serial dilutions in microtiter plates utilizing the example of screening for peptide agonists at the mouse glucagon-like peptide-1 receptor (GLP-1R). Our methods allow for high-throughput cell-based assays to screen for agonists and are easily scalable to support increased sample throughput, or to allow for increased numbers of assay plate copies (e.g., for a panel of more target cell lines).

The GLP-1R is an established drug target in the treatment of type 2 diabetes2. The native peptide agonist for this receptor, GLP-1, has an in vivo half-life of 2-3 min3. The binding of GLP-1 to its G protein coupled target receptor results in the downstream production of the second messenger cAMP through native G protein coupling to the activation of adenylyl cyclase. Measurement of the accumulated cAMP provides a robust assay to monitor receptor activation and to screen for active GLP-1 analogues with preferred physicochemical properties. Such an assay requires the serial dilution of test samples to construct concentration-response curv....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Peptide Serial Dilution

  1. Prepare assay buffer: Hanks buffered salt solution (HBSS) supplemented with 25 mM HEPES, 0.1% BSA and 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), pH 7.4.
  2. Use a bulk reagent dispenser to systematically add 5 µl of assay buffer to each well of five 384-well low volume assay plates.
    1. Use internal software to create a dispensing program for 5 µl volume addition to every well of a 384-well plate as per manufacturer's instructions.
    2. Immerse disp.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We routinely use a two-step method to dilute peptides via acoustic transfer. For the first step, an acoustic dispenser aligned with automation is used to create four stock peptide intermediate dilutions across two source plates (Figure 1a, b). For the second step, we use an acoustic dispenser to further dilute stock dilutions from source plates A and B to create an 11-point concentration range for each test peptide (Figure 1c). Each pepti.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol describes the successful application of automated acoustic dispensing to serially dilute peptide samples over a concentration range of 3 x 106 requiring less than 1 µl of sample. The major advantage of this method is to increase data quality through minimizing peptide adsorption to plasticware via reduced exposure of samples to experimental containers and plasticware (such as pipette tips) that are normally required for reagent transfer and mixing. While acoustic dispensing does not complete.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

None.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Hanks’ Balanced Salt solution Sigma-Aldrich H8264
HEPES Sigma-Aldrich H3375
Bovine Serum Albumin Sigma-Aldrich A9418
3-Isobutyl-1-methylxanthine Sigma-Aldrich I7018 Prepared as a 0.5 M stock in DMSO
GLP-1 (7-36) amide Bachem H-6795 Prepared as a 1 mg/ml stock in PBS, referred to as '100X reference control'
Test peptides Produced in-house at MedImmune Supplied at various concentrations in DMSO or PBS as appropriate
100X peptide stock Produced in-house at MedImmune Test peptide diluted into assay buffer to 100X final required concentration
Trypan Blue Solution, 0.4% Thermo Fisher Scientific 15250-061
Cedex XS Cell Analyzer Innovatis
Corning 384 well plates, low volume Sigma-Aldrich 4514
Echo Qualified 384-Well Polypropylene Microplate Labcyte Inc. P-05525
Echo Qualified Reservoir Labcyte Inc. ER-0055
Echo 550 Liquid Handler Labcyte Inc. Droplet transfer volumes in increments of 2.5 nl
Echo 525 Liquid Handler Labcyte Inc. Droplet transfer volumes in increments of 25 nl
ACell Benchtop Automation  HighRes Biosolutions MC522
Cellario Lab Automation Scheduling software for Life Science Robotics HighRes Biosolutions
MultidropCombi Reagent Dispenser ThermFisher Scientific 5840300 Referred to as 'bulk reagent dispenser'
HTRF cAMP Dynamic 2 kit Cisbio Bioassays 62AM4PEJ
EnVision Multilabel Reader PerkinElmer

  1. Naylor, J., Rossi, A., Hornigold, D. C. Acoustic Dispensing Preserves the Potency of Therapeutic Peptides throughout the Entire Drug Discovery Workflow. J.Lab.Autom. 21 (1), 90-96 (2016).
  2. Campbell, J. E., Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell.Metab. 17 (6), 819-837 (2013).
  3. Hui, H., Farilla, L., Merkel, P., Perfetti, R. The short half-life of glucagon-like peptide-1 in plasma does not reflect its long-lasting beneficial effects. Eur.J.Endocrinol. 146 (6), 863-869 (2002).
  4. Harris, D., Olechno, J., Datwani, S., Ellson, R. Gradient, contact-free volume transfers minimize compound loss in dose-response experiments. J.Biomol.Screen. 15 (1), 86-94 (2010).
  5. Ekins, S., Olechno, J., Williams, A. J. Dispensing Processes Impact Apparent Biological Activity as Determined by Computational and Statistical Analyses. PLoS ONE. 8 (5), 62325 (2013).
  6. Goebel-Stengel, M., Stengel, A., Tache, Y., Reeve, J. R. The importance of using the optimal plasticware and glassware in studies involving peptides. Anal.Biochem. 414 (1), 38-46 (2011).
  7. McDonald, G. R., et al. Bioactive Contaminants Leach from Disposable Laboratory Plasticware. Science. 322 (5903), 917 (2008).
  8. Belaiche, C., Holt, A., Saada, A. Nonylphenol ethoxylate plastic additives inhibit mitochondrial respiratory chain complex I. Clin Chem. 55 (10), 1883-1884 (2009).
  9. Sackmann, E. K., et al. Technologies That Enable Accurate and Precise Nano- to Milliliter-Scale Liquid Dispensing of Aqueous Reagents Using Acoustic Droplet Ejection. J.Lab.Autom. 21 (1), 166-177 (2016).
  10. Grant, R. J., et al. Achieving accurate compound concentration in cell-based screening: validation of acoustic droplet ejection technology. J.Biomol.Screen. 14 (5), 452-459 (2009).
  11. Turmel, M., Itkin, Z., Liu, D., Nie, D. An Innovative Way to Create Assay Ready Plates for Concentration Response Testing Using Acoustic Technology. J.Lab.Autom. 15 (4), 297-305 (2010).
  12. Butler, R., et al. Use of the site-specific retargeting jump-in platform cell line to support biologic drug discovery. J.Biomol.Screen. 20 (4), 528-535 (2015).
  13. Panchal, S., Verma, R. J. Effect of sodium fluoride in maternal and offspring rats and its amelioration. Asian Pac.J.Reprod. 3 (1), 71-76 (2014).
  14. Hanson, S. M., Ekins, S., Chodera, J. D. Modeling error in experimental assays using the bootstrap principle: understanding discrepancies between assays using different dispensing technologies. J.Comput. Aided Mol.Des. 29 (12), 1073-1086 (2015).
  15. Harris, D., Olechno, J., Datwani, S., Ellson, R. Gradient, Contact-Free Volume Transfers Minimize Compound Loss in Dose-Response Experiments. J.Biomol. Screen. 15 (1), 86-94 (2010).
  16. Chan, G. K. Y., Wilson, S., Schmidt, S., Moffat, J. G. Unlocking the potential of high-throughput drug combination assays using acoustic dispensing. J.Lab.Autom. 21 (1), 125-132 (2016).
  17. Roberts, K., et al. Implementation and challenges of direct acoustic dosing into cell-based assays. J.Lab.Autom. 21 (1), 76-89 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved