A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
This paper describes a novel protocol that combines the pharmacological manipulation of memory and radio telemetry to document and quantify the role of cognition in navigation.
An animal's ability to perceive and learn about its environment plays a key role in many behavioral processes, including navigation, migration, dispersal and foraging. However, the understanding of the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited by the methodological difficulties involved in monitoring, manipulating the cognition of, and tracking wild animals. This study describes a protocol for addressing the role of cognition in navigation that combines pharmacological manipulation of behavior with high-precision radio telemetry. The approach uses scopolamine, a muscarinic acetylcholine receptor antagonist, to manipulate cognitive spatial abilities. Treated animals are then monitored with high frequency and high spatial resolution via remote triangulation. This protocol was applied within a population of Eastern painted turtles (Chrysemys picta) that has inhabited seasonally ephemeral water sources for ~100 years, moving between far-off sources using precise (± 3.5 m), complex (i.e., non-linear with high tortuosity that traverse multiple habitats), and predictable routes learned before 4 years of age. This study showed that the processes used by these turtles are consistent with spatial memory formation and recall. Together, these results are consistent with a role of spatial cognition in complex navigation and highlight the integration of ecological and pharmacological techniques in the study of cognition and navigation.
Cognition (herein defined as "all processes involved in acquiring, storing, and using information from the environment" 1) is central to an array of complex navigation tasks2. For example, Sandhill cranes (Grus canadensis) show a marked improvement in migratory precision with experience3, and sea turtle species imprint on their natal beaches as hatchlings and return as adults4-6. Similarly, successful migration, dispersal, and foraging hinge on an animal's ability to gather information about their spatial environment7,8. Some animals appear to learn navigational routes in relation to specific landscape features9 and may use spatial cognition when moving between nesting and foraging areas10. Recent work on Eastern Painted turtles (Chrysemys picta) suggests a critical period in navigation, where successful navigation of upland habitat as adults hinges on juvenile experience within a narrow age range (< 4 years old11-13). Though together these studies demonstrate the progress that has been made in understanding the role of learning in navigation4-6, 14-16, the mechanisms that underlie such behaviors and the full role of cognition in navigation remain enigmatic, especially in vertebrates8, 17, 18.
Field investigations into the role of cognition in navigation are rare2, 8, 18, due largely to the methodological difficulties involved in monitoring, manipulating, and tracking wild animals. For example, the large spatial and temporal scales on which many animals navigate often preclude investigating both type of information that those animals potentially learn and how that information is acquired. Experimenters often face the logistical difficulties of detecting and locating animals when monitoring behavior over such large areas and time frames, thereby limiting the type of data that can be collected and the conclusions that can be drawn. Although the use of animal-mounted global positioning system (GPS) recorders may improve the probability of detection of widely ranging animals, spatial data collected by these means are generally of very coarse resolution and lack a detailed behavioral component. Consequently, the data that can be collected under such circumstances are of limited value for examining subtle variation in behavior among different groups or experimental treatments. Similarly, the direct, controlled manipulation of target behaviors is often prohibited by the spatial and temporal scales typical of navigation behaviors, as well as by inherent logistical constraints of field studies. Finding animals in their natural habitat, catching and manipulating them, and then collecting behavioral data without inadvertently producing spurious behaviors are major challenges of working with animals in the field. Therefore, the design of experiments on free-ranging animals is often constrained and the ability to conduct rigorous, controlled field experiments on the role of cognition in navigation is limited.
The present study circumvents many of the previous difficulties of investigating the relationship between cognition and navigation in the field by using a novel combination of pharmacological manipulation and high-resolution tracking of freely navigating animals under field conditions. Scopolamine, a muscarinic acetylcholine receptor (mAChR) antagonist, has been shown to block spatial memory formation and recall by blocking cholinergic activity in the brains of a variety of vertebrate taxa18-24. Scopolamine can be used effectively on free-ranging animals under field conditions11, 18 and has a marked but temporary effect (e.g., 6 - 8 hr in reptiles). Methylscopolamine, a mAChR antagonist that does not cross the blood-brain-barrier19-21, can be used to control for the possible peripheral effects of scopolamine and for non-cognitive aspects of behavior11. Pharmacology allows for the precise manipulation of cognition by directly affecting receptors, and high-precision radio telemetry allows for the observation of the resulting effects on behavior. Measurements taken via remote triangulation with both high spatial (± 2.5 m) and temporal (15 min) resolution allow for the precise documentation and quantification of animal behavior relative to the experimental manipulation of cognition.
This study11 was conducted between May and August 2013 and 2014 at Chesapeake Farms, a 3,300 acre wildlife management and agriculture research area in Kent Co., MD, USA (39.194°N, 76.187°W). The protocol involves five main steps: (1) capturing and handling animals (2) affixing radio transmitters (3) preparing the pharmacological agents (4) monitoring and manipulating animal movements, and (5) analyzing spatial data. The study described herein focused on the Eastern painted turtle (Chrysemys picta). Turtles in the focal population engage in annual overland movements in which they leave their home ponds and navigate to alternative aquatic habitats using one of four very precise (± 3.5 m), complex, and highly predictable routes11, 12. Pharmacological manipulation of animals in this system paired with high-resolution radio telemetry sheds light on the role of cognition in freely navigating wild animals.
All procedures involving animal subjects were approved by the Institutional Animal Care and Use Committees of Franklin and Marshall and Washington Colleges and followed all local, state, and federal regulations.
1. Capture and Handling
2. Affixing Radio Transmitter
3. Pharmacological Preparation
Caution: Scopolamine hydrobromide and scopolamine methylbromide are potent acetylcholine antagonists. When working with these drugs, consult the Materials Safety Data Sheet, use proper personal protective equipment (e.g., gloves, fume hood), and follow laboratory safety protocols to avoid accidental contact.
4. Track Turtle Movements Using Radio Telemetry11, 12
5. Spatial Analysis
Using the above protocol, the role of cognition in navigation was assessed in a population of Eastern painted turtles (Chrysemys picta) that has experienced seasonal ephemeral water sources for ~100 years. This population inhabits a mix of ephemeral (drained annually and rapidly - in several hr) and permanent aquatic habitats (Figure 1). Previous studies suggest that after their ponds are drained, resident turtles navigate to alternative water sources with high p...
The protocol presented here allows the experimenter to document and quantify the role of cognition in navigation. Manipulating cognition in the field has proven difficult, as most approaches leave experimenters unable to know which specific aspects of the animal's behavior are being manipulated. However, the protocol presented here allows the experimenter to accurately manipulate and thus assess the role of cognition in navigation. The technique further allows experimenters to monitor animal navigation in real-time w...
The authors have nothing to disclose.
This research was funded by Washington College's Provost's Office, Middendorf Fund, Hodson Trust, and Franklin and Marshall's Hackman Fund and College of Grants. We thank E. Counihan, S. Giordano, F. Rauh, and A. Roth for assistance in the field. We thank M. Conner, R. Fleegle, and D. Startt at Chesapeake Farms, and Chino Farms for permission and access. The Washington College GIS Program helped with the preparation of maps.
Name | Company | Catalog Number | Comments |
Scopolamine bromide | Sigma | S0929 | USP |
Scopolamine methylbromide | Sigma | S8502, 1421009 | USP and non USP versions |
Saline | Hanna Pharmaceutical Supply Co., Inc. | 409488850 | USP, formulated as an injectable |
Syringe filter | Fisher | 09-720-004 | |
Syringe | Fisher | 14-823-30 | |
Hypodermic needle | Fisher | 14-823-13 | |
Antenna | Wildlife Materials | 3 Element Folding Yagi | Antennae with additional elements are available, but can be cumbersome in the field. |
Radio Receiver | Wildlife Materials | TRX-2000S | Water resistant models are also available. |
Compass | Brunton | Truarc 15 | |
Radio transmitters | Holohil Inc. | BD-2, PD-2, RI-2B | Transmitter models vary in lifespan and signal output as a function of battery size and pulse rate settings, which can be customized based on the study question and organism. |
GPS | Garmin | eTrex Venture | |
Coaxial cable | newegg.com | C2G 40026 | BNC connections are necessary. |
Hoop net | Memphis Net and Twine | TN325 | Net mesh size should be chosen based on the minimum size of the target animal. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved