A subscription to JoVE is required to view this content. Sign in or start your free trial.
Mice bearing the Colon-26 (C26) carcinoma represent a classical model of cancer cachexia. Progressive muscle wasting occurs in association with tumor growth, over-expression of muscle-specific ubiquitin ligases, and reductions in muscle cross-sectional area. Fat loss is also observed. Cachexia is studied in a time-dependent manner with increasing severity of wasting.
Cancer cachexia is the progressive loss of skeletal muscle mass and adipose tissue, negative nitrogen balance, anorexia, fatigue, inflammation, and activation of lipolysis and proteolysis systems. Cancer patients with cachexia benefit less from anti-neoplastic therapies and show increased mortality1. Several animal models have been established in order to investigate the molecular causes responsible for body and muscle wasting as a result of tumor growth. Here, we describe methodologies pertaining to a well-characterized model of cancer cachexia: mice bearing the C26 carcinoma2-4. Although this model is heavily used in cachexia research, different approaches make reproducibility a potential issue. The growth of the C26 tumor causes a marked and progressive loss of body and skeletal muscle mass, accompanied by reduced muscle cross-sectional area and muscle strength3-5. Adipose tissue is also lost. Wasting is coincident with elevated circulating levels of pro-inflammatory cytokines, particularly Interleukin-6 (IL-6)3, which is directly, although not entirely, responsible for C26 cachexia. It is well-accepted that a primary mechanism by which the C26 tumor induces muscle tissue depletion is the activation of skeletal muscle proteolytic systems. Thus, expression of muscle-specific ubiquitin ligases, such as atrogin-1/MAFbx and MuRF-1, represent an accepted method for the evaluation of the ongoing muscle catabolism2. Here, we present how to execute this model in a reproducible manner and how to excise several tissues and organs (the liver, spleen, and heart), as well as fat and skeletal muscles (the gastrocnemius, tibialis anterior, and quadriceps). We also provide useful protocols that describe how to perform muscle freezing, sectioning, and fiber size quantification.
Muscle wasting is a serious complication of various clinical conditions such as cancer, sepsis, liver, cirrhosis, heart and kidney failure, chronic obstructive pulmonary disease, and AIDS. In particular, muscle wasting is evident in at least 50% of patients with cancer1. Loss of skeletal muscle in cancer results from increased protein degradation due to the over-activation of the skeletal muscle proteolytic systems and/or from decreased protein synthesis6. Lipolysis is also evident, leading to the depletion of adipose tissue. Clinically, cachexia is associated with reduced quality and length of life and is estimated to be the cause of death in 20....
Ethics Statement: All studies described were approved by the Institutional Animal Care and Use Committees of the Thomas Jefferson University and Indiana University School of Medicine.
1. C26 Cell Growth and Preparation
C26 tumor growth kinetics show a lag phase for the first 7 - 8 d after injection, followed by exponential cell growth (4 - 5 d). The tumor mass eventually reaches ~10% of the body weight (about 2 g; Figure 1A-B). During the first phase, the tumor can be located by palpation only and appears as a small protrusion of the skin. In the second phase, the tumor is observed as a mass under the skin. Rarely, the tumor becomes ulcerated, resulting in an open wound.......
Especially in its latest stages, colorectal cancer is associated with the development of cachexia, which is responsible for poorer outcomes and reductions in patient quality of life. Many studies have focused on the treatment of conditions secondary to cancer; however, despite many efforts in this direction, there is still no approved therapy for cancer cachexia21. Thus, it is imperative that animal models resemble the human pathology as closely as possible in order to maximize the translation of findings.
.......The authors have nothing to disclose.
We thank Richard Lieber and Shannon Bremner for their ImageJ macro and instructions. While at Thomas Jefferson University, this work was supported by the Pennsylvania Department of Health CURE Grant TJU No. 080-37038-AI0801. Subsequently, this study was supported by a grant to AB from the National Institutes of Health (R21CA190028), and by grants to TAZ from the National Institutes of Health (R01CA122596, R01CA194593), the IU Simon Cancer Center, the Lustgarten Foundation, the Lilly Foundation, Inc., and the IUPUI Pancreas Signature Center.
....Name | Company | Catalog Number | Comments |
Cell culture Flasks | Falcon - Becton Dickinson | 35-5001 | |
DMEM | Cellgro | 10-017-CV | |
FBS | Gibco | 26140 | |
Streptomycin-Penicillin | Cellgro | 30-002-CI | |
CD2F1 mice | Harlan | 060 | |
Anesthesia apparatus | EZ-Anesthesia | EZ-7000 | |
2-Methyl Butane | Sigma-Aldrich | M32631 | |
OCT | Tissue-Tek | 4583 | |
Cryostat | Leica | CM1850 | |
Cork disks | Electron Microscopy Sciences | 63305 | |
Superfrost plus glass slides | VWR | 48311-703 | |
Anti-Laminin Rabbit polyclonal antibody | Sigma-Aldrich | L9393 | |
Anti-Dystrophin Mouse Monoclonal antibody | Vector Laboratories | VP-D508 | |
Alexa Flour 594 anti-mouse IgG | Life Technologies | A11062 | |
Alexa Flour 594 anti-rabbit IgG | Life Technologies | A21211 | |
Hematoxylin | Sigma-Aldrich | GHS216 | |
Eosin | Sigma-Aldrich | HT110332 | |
Xylene | Acros Organics | 422680025 | |
Cytoseal-XYL | Thermo | 8312-4 | |
Microscope | Zeiss | Observer.Z1 | |
Bamboo Tablet | Wacom | CTH-661 | |
Prism 7.0 for Mac OS X | GraphPad Software, Inc. | ||
Excel for Mac 2011 | Microsoft Corp. | ||
Image J | US National Institutes of Health | IJ1.46 | http://rsbweb.nih.gov/ij/download.html |
Microtainer | BD | 365873 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved