JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

In Vitro Polymerization of F-actin on Early Endosomes

Published: August 28th, 2017

DOI:

10.3791/55829

1Department of Biochemistry, University of Geneva, 2Department of Fundamental Microbiology, University of Lausanne

Many early endosome functions, particularly cargo protein sorting and membrane deformation, depend on patches of short F-actin filaments nucleated onto the endosomal membrane. We have established a microscopy-based in vitro assay that reconstitutes the nucleation and polymerization of F-actin on early endosomal membranes in test tubes, thus rendering this complex series of reactions amenable to genetic and biochemical manipulations. Endosomal fractions are prepared by floatation in sucrose gradients from cells expressing the early endosomal protein GFP-RAB5. Cytosolic fractions are prepared from separate batches of cells. Both endosomal and cytosolic fractions can be stored frozen in liquid nitrogen, if needed. In the assay, the endosomal and cytosolic fractions are mixed, and the mixture is incubated at 37 °C under appropriate conditions (e.g., ionic strength, reducing environment). At the desired time, the reaction mixture is fixed, and the F-actin is revealed with phalloidin. Actin nucleation and polymerization are then analyzed by fluorescence microscopy. Here, we report that this assay can be used to investigate the role of factors that are involved either in actin nucleation on the membrane, or in the subsequent elongation, branching, or crosslinking of F-actin filaments.

Tags

Keywords In Vitro

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved