The cytogenetic dicentric chromosome (DC) assay quantifies exposure to ionizing radiation. The Automated Dicentric Chromosome Identifier and Dose Estimator software accurately and rapidly estimates biological dose from DCs in metaphase cells. It distinguishes monocentric chromosomes and other objects from DCs, and estimates biological radiation dose from the frequency of DCs.
Biological radiation dose can be estimated from dicentric chromosome frequencies in metaphase cells. Performing these cytogenetic dicentric chromosome assays is traditionally a manual, labor-intensive process not well suited to handle the volume of samples which may require examination in the wake of a mass casualty event. Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates this process by examining sets of metaphase images using machine learning-based image processing techniques. The software selects appropriate images for analysis by removing unsuitable images, classifies each object as either a centromere-containing chromosome or non-chromosome, further distinguishes chromosomes as monocentric chromosomes (MCs) or dicentric chromosomes (DCs), determines DC frequency within a sample, and estimates biological radiation dose by comparing sample DC frequency with calibration curves computed using calibration samples. This protocol describes the usage of ADCI software. Typically, both calibration (known dose) and test (unknown dose) sets of metaphase images are imported to perform accurate dose estimation. Optimal images for analysis can be found automatically using preset image filters or can also be filtered through manual inspection. The software processes images within each sample and DC frequencies are computed at different levels of stringency for calling DCs, using a machine learning approach. Linear-quadratic calibration curves are generated based on DC frequencies in calibration samples exposed to known physical doses. Doses of test samples exposed to uncertain radiation levels are estimated from their DC frequencies using these calibration curves. Reports can be generated upon request and provide summary of results of one or more samples, of one or more calibration curves, or of dose estimation.
Radiation biodosimetry uses biological markers, mostly chromosomal aberrations such as dicentric chromosomes (DCs) and chromosome translocations to measure radiation doses that individuals are exposed to. A biologically absorbed dose may be different from the physical dose measured by instruments due to variability between individuals. Similarly, radiation of a certain physical dose can produce different biological exposures due to underlying physiological or environmental conditions. Knowledge of the biological dose is of particular importance for both diagnosis and treatment.
The DC assay is the gold standard of the World Health Organization (WHO) and International Atomic Energy Agency (IAEA) for assessing biological radiation exposure in people. It was the first assay recommended by the IAEA and WHO for radiation dose assessment. DC frequency is relatively stable for approximately 4 weeks after radiation exposure1 and their quantitative correlation with emitted radiation dose is accurate, which make DCs the ideal biomarker. The relationship between radiation dose (referenced in Gray [Gy] units), and DC frequency (referenced as number of DCs per cell) can be expressed as a linear-quadratic function.
The cytogenetic DC assay has been the industry standard for about 55 years2. It has been performed manually, requiring 1 - 2 days to analyze microscope data from a single blood sample. Several hundred to several thousand images are needed to accurately estimate radiation exposure depending on the dose3. At doses exceeding 1 Gy, IAEA recommends a minimum of 100 DCs be detected. Examination of 250 - 500 metaphase images is common practice in biodosimetry cytogenetic laboratories. For samples with exposures <1 Gy, 3,000 - 5,000 images are suggested due to the lower probabilities of DC formation. In either case, it is a labor-intense task.
Cytogenetic biodosimetry laboratories create their own in vitro radiation biodosimetry calibration curves before assessing biological doses in test samples. Blood samples from normal, control individuals are exposed to radiation and lymphocytes are then cultured and prepared for metaphase chromosome analysis. Using these samples, biological doses received are calibrated to the known physical doses emitted by a standard radiation source. After metaphase cell images are recorded, experts examine images, count DCs and calculate DC frequencies for each sample. A calibration curve is built by fitting a linear-quadratic curve to the DC frequencies at all doses. Then, exposures in test sample from individuals can be inferred by matching the DC frequencies to the calibrated doses on the curve or by specifying them in the corresponding linear quadratic formula.
We have automated both the detection of DCs and dose determination to expedite this procedure using software. Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) uses machine learning-based image processing techniques to detect and discriminate dicentric chromosomes (DCs) from monocentric chromosomes (MCs) and other objects and automates radiation dose estimation. The software aims to significantly reduce or eliminate the necessity for manual verification of DC counts and to accelerate dose estimation through automation. It has been developed with the involvement of reference biodosimetry laboratories at Health Canada (HC) and Canadian Nuclear Laboratories (CNL). Their feedback will ensure that performance will continue to meet IAEA criteria for this assay.
The software performs the following functions: 1) filtering DCs and selecting optimal metaphase cell images for analysis, 2) chromosome recognition, DC detection, and DC frequency determination, and 3) estimating radiation dose from dose-calibrated, cytogenetic radiation data. This software processes groups of metaphase images from the same individual (termed a sample), counts the number of DCs in each using image processing techniques, and returns the estimated radiation dose received by each sample in units of Grays (Gy).
The software has been designed to handle a range of chromosome structures, counts, and densities. However, the algorithm performs optimally in metaphase images containing a near complete complement of well-separated, linear chromosomes4. Images containing highly overlapped sets of chromosomes, multiple cells, incomplete metaphase cells, sister chromatid separation, nuclei, non-chromosomal objects, and other defects can reduce the accuracy of the algorithm. Dedicated image selection models and other object segmentation thresholds can filter out the majority of sub-optimal images and false positive DCs.
Dicentric chromosome detection is performed when an image is processed. The algorithm attempts to determine which objects in an image are chromosomes and then locates the two regions most likely to be centromeres on each chromosome. Then, a series of different Support Vector Machine (SVM) learning models distinguish chromosomes as either DCs or normal, monocentric chromosomes. The SVM models differ in sensitivity and specificity of DC detection (see Step 3.1.4 below), which can affect the DC frequencies that are determined in a sample.
ADCI processes sets of Giemsa- (or DAPI-) stained metaphase digital images (in TIFF or JPG format) for one or more samples. The software analyzes DCs in both calibration samples and test samples. The physical doses (in Gy) of calibration samples are known and are used in the generation of a calibration curve. The physical and biological doses of individuals with unknown exposures are inferred by the software from the machine-generated calibration curve. Although laboratories use comparable techniques, the calibration curves from different laboratories often vary3. Both calibration curve and test samples from the same laboratory should be processed for accurate dose estimation in test samples.
This software offers speed, accuracy and scalability which addresses the productivity required to handle an event in which many individuals must simultaneously be tested. It was developed from 2008 - 20174,5,6,7,8,9,10,11,12,13. Using recent computer hardware, this desktop PC software can process and estimate radiation dose in a patient sample of 500 metaphase genome equivalents in 10 - 20 min 4. The code is based on a set of proprietary image segmentation and machine learning algorithms for chromosome analysis. Expert analysis of each chromosome exposed to 3 Gy radiation gave comparable accuracies to ADCI. In a set of 6 samples of unknown exposures (previously used in an international proficiency exercise), the software estimated doses within 0.5 Gy of the values obtained by manual review of the same data by HC and CNL, fulfilling the IAEA's requirements for triage biodosimetry. Furthermore, inter-laboratory standardization and ultimately reproducibility of dose estimates benefit from having a common, automated DC scoring algorithm. Nevertheless, the software permits customization of image filtering and selection criteria, enabling differences in chromosome preparation methods and radiation calibration sources to be taken into account.
This software is a graphical user interface (GUI)-based system which analyzes sets of chromosome images containing Giemsa (or DAPI)-stained metaphase cells for abnormalities that result from exposure to ionizing radiation. The image sets are digitally photographed with a light (or epifluorescent) microscope system and each set corresponds to a different sample. The software utilizes image processing techniques to detect and discriminate DCs from MCs and other objects. Empirically-derived segmentation filters then automatically eliminate false positive DCs without affecting true DCs. Finally, the software automatically filters out undesirable images based on various image properties found poor quality metaphase images with precomputed (or user-specified) image selection models. These images include those containing excessive or insufficient numbers of "noisy" objects, multiple overlapping chromosomes, images lacking metaphase chromosomes, excessive numbers of sister chromatids4. The automatically curated image data are used to generate dose calibration curve from samples of known radiation dose and are used to estimate exposures of test samples exposed to unknown doses.
Output of the software can be viewed and saved as: 1) text-based output viewed in the console, 2) plots which can be saved as images, and 3) reports in HTML format. Many aspects of the software are customizable to suit the specific needs of different laboratories. Individual laboratories usually provide both calibration and test samples prepared and collected based on the cytogenetic protocol validated in that laboratory. This maintains uniformity of sample preparation and allows calibration curves generated from calibration samples to be meaningfully applied to test samples derived using the same protocol. Calibration curves may also be created from either curve coefficients or DC frequencies at defined doses. The most accurate dose estimates are obtained by filtering out lower quality images and false positive DCs (FPs). Selection of optimal image subsets within each sample is accomplished using 'Image selection models' that eliminate subpar images which tend to introduce FPs. A series of pre-validated models are included with the software, however additional models with customized thresholds and filters can be created and saved, by the user.
Once the software successfully loads, the main graphical user interface (GUI) is presented (see Figure 1). From this interface, samples, each consisting of a folder of metaphase cell image files, may be selected and processed to identify DCs, calibration curves may be created and compared, and radiation exposure dose of samples may be determined.
Figure 1: The Major Sectors of the Graphical User Interface Include: a list of samples (1), a list of calibration curves (2), the process queue (3), which monitors the status of DC detection in each set of images of each sample, a plot display (4), which summarizes statistical or other quantitative properties of a set of images in samples or calibration curves, and a console (5) which contains descriptive text as outputs of each operation performed by the program. Please click here to view a larger version of this figure.
1. Import and Process Samples
2. Viewing and Selection of Images (Optional, Recommended Step)
NOTE: This step describes the usage of the Metaphase Image Viewer and creation of an image selection model. Some validated image selection models are included with the software which can be used in calibration curve generation and dose estimation. Thus, this step is not required, however it may be used as a guide describing steps necessary to do so if desired.
3. Curve Generation
Figure 2: Visualization of the Effect of Changing the SVM Sigma Value from the Algorithm on the True Positive (TP) and False Positive (FP) DC Counts, the Positive Predictive Calue (PPV), and True Positive Rate (TPR). Please click here to view a larger version of this figure.
4. Dose Estimation
5. Reporting
NOTE: The method used to name a report and select a directory within which it is saved is common to all report types. A 'Report Name' must be provided. When a report is generated, a directory containing report files will be created using this name automatically. This directory will be placed within is the 'Report Folder'. By default, the 'Report Folder' is a directory named 'Reports' found in the data directory specified during installation.
6. Audit Capabilities
NOTE: The software records all operations carried out during a session in a log file. The program provides an accessory software application that enables the log files to be viewed, searched, used to evaluate the integrity of an analysis and in some instances, to recover sample data from incomplete or prematurely terminated sessions.
7. Curve and Dose Estimation Statistics Options
Testing of the software was carried out with metaphase chromosome image data obtained from HC and CNL. Blood samples were irradiated by an XRAD-320 unit (250 kV X-rays, 12.5 mA, 2mm Al filtration, dose rate: 0.92 or 1.7 Gy/min) calibrated with a ion chamber at HC and processed at both laboratories. Peripheral blood lymphocyte samples were cultured, fixed, and stained at each facility according to established protocols3,15. Metaphase images from Giemsa-stained slides were captured independently by each lab using an automated microscopy system. Experts in each laboratory scored DCs in several of these samples manually, constructed their own calibration curves and estimated doses of test samples of unknown exposures. A detailed description of these datasets is provided in Table 1.
Physical Dose | Purpose | HC preparation | CNL preparation | ||
Referred name | # of images | Referred name | # of images | ||
0 Gy | Calibration | HC0Gy | 731 | CNL0Gy | 798 |
0.1 Gy | Calibration | HC01Gy | 2162 | NA | NA |
0.25 Gy | Calibration | HC025Gy | 1826 | NA | NA |
0.5 Gy | Calibration | HC05Gy | 1054 | CNL05Gy | 1532 |
0.75 Gy | Calibration | HC075Gy | 1233 | NA | NA |
1 Gy | Calibration | HC1Gy | 1566 | CNL1Gy | 841 |
2 Gy | Calibration | HC2Gy | 1147 | CNL2Gy | 996 |
3 Gy | Calibration | HC3Gy | 1212 | CNL3Gy | 1188 |
4 Gy | Calibration | HC4Gy | 909 | CNL4Gy | 1635 |
5 Gy | Calibration | HC5Gy | 1019 | NA | NA |
3.1 Gy | Test | HCS01 | 540 | CNLS01 | 500 |
2.3 Gy | Test | HCS08 | 637 | CNLS08 | 500 |
1.4 Gy | Test | HCS10 | 708 | NA | NA |
1.8 Gy | Test | HCS04 | 600 | CNLS04 | 957 |
2.8 Gy | Test | HCS05 | 1136 | CNLS05 | 1527 |
3.4 Gy | Test | HCS07 | 477 | CNLS07 | 735 |
Table 1: Sources of Image Data Provided by HC and CNL for Evaluation of the Software.
Footnote: Modified from Table 1 in Rogan et al., 20164. Only manually preselected images were previously available to us from CNL. Unfiltered images have become available and image counts are updated accordingly. Additionally, newly acquired HC samples (0.25Gy, 0.75Gy, and 5Gy) are presented here.
Automatic Image Selection in Samples
Image quality is critical to correct DC detection in DC analysis. Image selection by cytogenetic specialists is usually performed manually in conventional DC analysis. ADCI uses quantitative image criteria to automatically select images before DC frequency calculation16. Users can either filter out images based on specific chromosome morphologies and/or sort cells according to relative proportions of lengths of objects according to known lengths of cytogenetic-defined groups of chromosomes in a normal human karyotype (termed the group-bin distance method). The available morphological filters use scale-invariant thresholds to reject cell images with incomplete chromosome sets or with multiple metaphases, with prometaphase chromosomes, with prominent sister chromatid dissociation, with highly bent and twisted chromosomes, with objects that have smooth contours characteristic of intact nuclei, and those in which fewer objects are recognized as chromosomes. Figure 3 (a) and (b) show examples of selected images, whereas Figure 3 (c) and (d) are examples of images that are filtered out by the software. These images are derived from sample HCS05 (described in Table 1), and are selected by the predefined image selection model which ranks all images by group bin distance, then selects the best 250 images. Chromosomes in Figure 3 (a), (b) are well separated, and exhibit satisfactory morphology. Figure 3 (c) contains excessive numbers of overlapped chromosome clusters. Figure 3 (d) shows severe sister chromatid separation. Sister chromatids are completely separated for at least 8 of the chromosomes and the centromeric constrictions are ambiguous in most of the other chromosomes.
Figure 3: Examples of Metaphase Images in Sample HCS05 (Magnification: 63X), both Unselected and Selected by the Model 'Group Bin Distance, Top 250 Images'. (A) and (B) are selected images. (C) and (D) are images that have been eliminated by the model. (C) was excluded because it contained too many overlapping chromosomes and (D) had excessive numbers of separated sister chromatids. Please click here to view a larger version of this figure.
The effects of applying these image selection models is evident by examining the confidence level of DC detection in a sample. Occurrences of DCs in a population of cells from an irradiated sample follow a Poisson distribution. The chi-square goodness-of-fit test compares the observed DC frequency distribution to the expected fit to the Poisson distribution. Models that properly filter sample data exhibit DC frequencies not significantly different from the expected Poisson derived values (typically significance level >0.01). Figure 4 displays DC occurrences and the corresponding fits to Poisson distributions for the HC4Gy sample of all images vs. only images selected by the "group bin distance, top 250 images" model. Figure 4 (b) shows a better fit to the Poisson distribution. The p-value (0.36) of the filtered set of images significantly exceeds that of the unfiltered DC distribution in Figure 4 (a). At either 5% or 1% significance levels, the unfiltered sample in Figure 4 (a) is less reliable, because it contains lower quality DC data, as the null hypothesis of a Poisson distribution of DCs is rejected.
Figure 4: Screenshots of Proportionate DC Frequencies Fit to Poisson Dstributions of Sample HC4Gy in the Software. (A) All images are included, (B) Only images selected by model (group bin distance, top 250 images) are included. The legend (top right) indicates the statistics of the fit to the Poisson distribution (Dispersion Index, Mu test, and Lambda) and the Chi-square goodness of fit test (p-value) Please click here to view a larger version of this figure.
Dicentric Chromosome (DC) Detection
Accurate DC detection is the critical prerequisite requirement of ADCI. Correctly detected DCs and those missed by the software are respectively defined as true positives (TPs) and false negatives (FNs). Objects that are not DCs, but incorrectly detected as DCs, are referred to as false positives (FPs). FPs include monocentric chromosomes, chromosome fragments, separated sister chromatids, overlapped chromosome clusters, and non-chromosomal objects. Figure 5 shows the results of DC detection in two metaphase images. Objects 1 and 3 are TPs, while object 4 is a FP comprising two distinct monocentric chromosomes conjoined along their short arms. In Figure 5 (a), object 2 was originally a FP, but subsequently corrected by FP filters in the software. Object 5 and object 6 in Figure 5 (b) are likely examples of FNs.
Figure 5: Screenshots Indicate Metaphase Chromosome Classification of Potential DCs. (A) An image in sample CNL1Gy (magnification: 63X) showing 1 TP, object "1"; and 1 corrected FP, object "2". (B) An image in sample CNL4Gy (magnification: 63X) showing 1 TP, object "3"; 1 FP, object "4"; and 2 potential FNs, objects "5" and "6". TPs, corrected FPs, normal monocentric, and unclassified chromosomes are respectively outlined with red, yellow, green, and blue contours. Please click here to view a larger version of this figure.
Dose Estimation of Test Samples
The final result of ADCI analyses are the dose estimates of samples inferred from calibration curves. Dose estimations made by the software for the test samples in Table 1 are indicated in Tables 2 and 3. For comparison, the physical radiation dose emitted and the manual scored doses by experts at HC for samples HCS01, HCS08 and HCS10 are indicated. Similarly, the physical and manual scored doses by CNL experts are shown for CNLS04, CNLS05 and CNLS07.
Figure 6 demonstrates calibration curves with radiation dose estimates for Health Canada biodosimetry laboratory samples HCS01, HCS08, HCS10, HCS04, HCS05 and HCS07. The calibration curve is generated using samples HC0Gy, HC1Gy, HC2Gy, HC3Gy and HC4Gy. The image selection model containing 3 Z-score-based filters + "group bin distance, top 250 images" is applied to all samples. Dose estimates along with associated statistical analyses are shown in Table 2.
Figure 6: Screenshot of Dose Estimation of HC Test Samples. Black squares represent calibration samples. Images in test samples and calibration samples are selected by the model (3 FP filters + group bin distance, top 250 images). Thick dotted lines represent the mapping of DCs/Metaphase through the calibration curve to estimated dose. Thin dotted lines denote upper and lower 95% confidence limits of DCs/Metaphase. Color codes of test samples: bright red, HC S01 (physical dose: 3.1Gy, HC inferred dose: 3.4Gy, ADCI: 3Gy); dark green, HC S04 (physical dose: 1.8Gy, ADCI: 1.85Gy); bright blue, HC S05 (physical dose: 2.8Gy, ADCI: 2.95Gy); dark blue, HC S07 (physical dose: 3.4Gy, ADCI: 2.35Gy); dark red, HC S08 (physical dose: 2.3Gy, HC inferred dose: 2.5Gy, ADCI: 2Gy); bright green, HC S10 (physical dose: 1.4Gy, HC inferred dose: 1.4Gy, ADCI: 0.95Gy). Please click here to view a larger version of this figure.
Samples | Physical Dose | HC Inferred Dose | ADCI Estimated Dose | Estimated Dose LCL | Estimated Dose UCL | P-value* |
HCS01 | 3.1 | 3.4 | 3 | 2.3 | 3.8 | 0.117 |
HCS08 | 2.3 | 2.5 | 2 | 1.4 | 2.7 | 0.815 |
HCS10 | 1.4 | 1.4 | 0.95 | 0.5 | 1.55 | 0.211 |
HCS04 | 1.8 | NA | 1.85 | 1.25 | 2.55 | 0.0293 |
HCS05 | 2.8 | NA | 2.95 | 2.25 | 3.75 | 0.00354 |
HCS07 | 3.4 | NA | 2.35 | 1.7 | 3.1 | 0.0002 |
Table 2: Dose Estimation Results of HC Test Samples.
Footnote: Modified from Table 3 in Rogan et al., 20164. ADCI dose estimates previously reported were based on unfiltered images and curve fitting was performed using the least squares method. Here, the calibration curve was fit using the maximum-likelihood method and an image selection model containing 3 FP filters + "group bin distance, top 250 images" was applied before dose estimation. Estimated dose UCL and LCL refer to dose estimate upper and lower 95% confidence limits based on the Poisson nature of DC yield. * Chi square goodness of fit to theoretical Poisson distribution; NA: Results of manually inferred dose were not provided.
Radiation dose estimates for samples from Canadian Nuclear Laboratories CNLS04, CNLS05, CNLS07, CNLS01 and CNLS08 are shown in Figure 7. The calibration curve is generated using samples CNL0Gy, CNL0.5Gy, CNL1Gy, CNL2Gy, CNL3Gy and CNL4Gy. We applied an image selection model consisting of 6 FP filters to all samples. The results with statistical analyses are shown in Table 3.
Figure 7: Screenshot of Dose Estimation of CNL Test Samples. Black squares represent calibration samples. Images in test samples and calibration samples are selected using 6 FP filters. Thick dotted lines represent the mapping of DCs/Metaphase through the calibration curve to estimated dose. Thin dotted lines denote upper and lower 95% confidence limits of DCs/Metaphase. Color codes of test samples: bright red, CNL S04 (physical dose: 1.8Gy, CNL inferred dose: 1.7Gy, ADCI: 1.95Gy); dark red, CNL S05 (physical dose: 2.8Gy, CNL inferred dose: 2.7Gy, ADCI: 3.05Gy); bright green, CNL S07 (physical dose: 3.4Gy, CNL inferred dose: 3.1Gy, ADCI: 3.4Gy); dark green, CNL S01 (physical dose: 3.1Gy, ADCI: 3.75Gy); blue, CNL S08 (physical dose: 2.3Gy, ADCI: 2.8Gy). Please click here to view a larger version of this figure.
Samples | Physical Dose | CNL Inferred Dose | ADCI Estimated Dose | Estimated Dose LCL | Estimated Dose UCL | P-value* |
CNLS04 | 1.8 | 1.7 | 1.95 | 1.25 | 2.45 | 0.0545 |
CNLS05 | 2.8 | 2.7 | 3.05 | 2.75 | 3.35 | 0.325 |
CNLS07 | 3.4 | 3.1 | 3.4 | 3 | 3.75 | 0.473 |
CNLS01 | 3.1 | NA | 3.75 | 3.35 | >4 | 7.63E-11 |
CNLS08 | 2.3 | NA | 2.8 | 2.25 | 3.3 | 0.777 |
Table 3: Dose estimation results of CNL test samples.
Footnote: Modified from Table 3, Rogan et al., 20164. ADCI dose estimates previously reported were based on unfiltered (HC) or manually selected (CNL) images and curve fitting was performed using the least squares method. Here, the calibration curve was fit using the maximum-likelihood method and an image selection model containing 3 FP filters + "group bin distance, top 250 images" was applied before dose estimation. Estimated dose UCL and LCL, respectively, refer to dose estimated upper and lower 95% confidence limits based on the Poisson nature of DC yield.
* Chi square goodness of fit to theoretical Poisson distribution; NA: Results of manually inferred dose were not available.
Estimation of radiation dose within the linear range of the calibration curve (<1 Gy) can be performed with the software, however a Sigma value of 1.0 is recommended is to further reduce the frequency of misclassified DCs (Figure 8).
Figure 8: Screenshots of Two Calibration Curves Derived from HC Calibration Samples at Different Sigma Values. (A) HC calibration samples: 0Gy, 2Gy, 3Gy, 4Gy, and 5Gy at Sigma = 1.5. (B) HC calibration samples: 0Gy, 0.25Gy, 0.5Gy, 0.75Gy, 1Gy, 2Gy, 3Gy, 4Gy, and 5Gy using SVM Sigma = 1.0. Please click here to view a larger version of this figure.
These analyses indicate that there are small, but acceptable differences between physical and biologically inferred dose interpreted by experts and by the software. The difference between either manual or software estimation from the physical dose is referred to as the "error". The error in the inferred doses of samples manually scored by HC and CNL is ≤0.3 Gy. Automated processing by the software is less accurate than experts, but generally within the IAEA-specified triage limits of ± 0.5 Gy3. For most of the test samples in Tables 2 and 3, the software produced correct results within this threshold. However, HCS07 and CNLS01 exhibit a poor goodness-of-fit to the Poisson distribution, suggesting that there were potential problems in image and DC quality in these samples that were not resolved by application of the image and FP selection models. The p value significance threshold appears to be overly stringent in the case of HCS05, where the software accurately determined the correct dose.
Capabilities and limitations of the software
The protocol described in this paper introduces the typical step-wise procedure used in ADCI to import and process cytogenetic metaphase images, create radiation calibration curves, and estimate biological dose in individuals or samples exposed to unknown radiation levels. However, it is not necessary to carry out these instructions sequentially. For example, many test samples of unknown dose can be processed and analyzed using the same precomputed calibration curve. Furthermore, once processing is complete, the image selection and DC filtering models can be iterated by the user. Application of an appropriate image selection model depends on the characteristics and quality of the metaphase image data, which in turn relies both on the laboratory protocol used to prepare cells and the stringency criteria used to select cells with automated metaphase capture systems. Chromosome morphologies will differ among biodosimetry and cytogenetic laboratories, and thus, the image selection models should be evaluated by the user to determine whether the predefined image selection models supplied with the software will be adequate to produce accurate dose estimates, or whether custom models with user-defined thresholds need to be created. Based on our experience, the effectiveness of image selection models is influenced by the source and quality of the cell images. Users can design their own image selection criteria using different combinations of filters to eliminate false positive DCs and image selection models, and the corresponding threshold values to select desired images. There is flexibility in input of calibration curves and dose estimation, as coefficients of the linear-quadratic curve and DC frequencies can be modified or manually inputted.
Although the software is fully automated, images can be manually reviewed and selected. This capability is available to include or remove individually processed images through the Microscope Viewer function in the main GUI. Nevertheless, due to automation, the software is significantly more efficient compared with the manual scoring of metaphase images and counting DCs. A sample consisting of 1000 images can be processed in 20 (tiff) to 40 (jpg) min on a multi-core performance workstation. This software will be particularly useful in time-critical or labor-intensive situations, such as events in which multiple individuals have been exposed or were suspected to have been exposed to radiation, or where time-sensitive diagnoses and treatment decisions are critical.
Precise and accurate high throughput detection of DCs as well as dose estimation are necessary for unattended radiation assessment. Other available alternatives to the software do not fulfill both of these requirements. A user-assisted, image-based cytogenetic analysis (DCScore, Metasystems17) system requires manual verification of candidate DCs, due to a high error rate attributable to uncorrected overlaps between chromosomes, and the system does not determine radiation dose. DCScore would not be as effective as ADCI in a radiation event involving a large number of potentially exposed individuals. Large aperture microscope systems can collect images of multiple metaphase cells18, however, they do not analyze them. "CABAS"19 and "Dose Estimate"20 software can generate calibration curves and estimate dose, but do not score DCs. Other biodosimetry assays that are not based on DC analysis include H2AX fluorescence, fluorescence in situ hybridization with DNA probes targeted to specific chromosomes, gene expression, micronucleus assay, and urine and respiratory biomarkers. These methods are less specific and less sensitive for ionizing radiation, can be more costly, in some instances, are more time consuming, and have generally not been standardized across multiple reference laboratories. Most of these techniques do not detect stable radiation responses, so they cannot be used for long term assessment (>7 days post-exposure) of radiation dose. By contrast, this can evaluate individuals up to 90 days post-exposure, and can process data from any cytogenetics laboratory microscope imaging system. However, if a sample is drawn >4 weeks post-exposure, sensitivity is reduced due to the decay of dicentric aberrations1,2,3 and the software does not currently correct DC frequencies for delays in sampling exposed individuals.
This software has some limitations. Existing image selection models select mostly acceptable metaphase images, but in some instances, fail to eliminate unsatisfactory images, which can reduce the accuracy of DC detection. It is still an open question how to design a satisfactory image selection model that eliminates all unsuitable metaphase cells. The software provides accurate estimates for samples exposed to higher radiation doses (≥ 2 Gy). Despite considerable progress in reducing the number of false positive DCs16, these objects have not been eliminated. Lower quality metaphase cells at low radiation dose (especially < 1 Gy) are more prone to false positive DC detection. Therefore, low dose samples were not included when generating the calibration curve used for dose estimation of HC test samples. However, if a curve containing low dose samples is desired, a lower SVM Sigma value reduces false positive counts in low dose samples but may result in lower DC yields in high dose samples. Figure 8 compares the HC curve used for dose estimation (Sigma = 1.5) with a calibration curve fit with additional low dose samples at lower SVM sigma value (1.0). In samples with insufficient numbers of metaphase cells and/or poor quality metaphase images, it may not be possible to precisely estimate biological exposures at low dose, potentially resulting in deviations from physical dose exceeding 0.5 Gy.
The software may not accurately assess radiation types if their dose-response curves best fit a linear or near-linear model. Thus far, it has been tested only with samples exposed to X- and Gamma rays. If another radiation source is examined, users must ensure both calibration and test samples are exposed to the same type of radiation. The software uses either maximum likelihood or least squares fitting to construct a dose-response curve using a linear-quadratic model. There is currently no option to impose a strict linear curve fit, appropriate for high energy particle exposures, however such functionality will be available in the future.
Future development
Our ongoing efforts are focused on improving image selection models and accurate dose measurement, in particular of samples exposed to low radiation doses. Subsequent software versions will provide standard error measurements on dose estimates and confidence intervals on calibration curves. In addition, a high-performance-computing version of the software for the Blue Gene (BG/Q, IBM) supercomputer is under development for timely evaluation of individuals exposed in a mass-casualty radiation event. Some components of the software have already been tested and deployed on this platform11.
We are grateful to Dr. Ruth Wilkins, Radiobiology and Protection Division at Health Canada, and Farrah Flegal, Canadian Nuclear Laboratories and their laboratory personnel for access to metaphase image data from their cytogenetic biodosimetry laboratories. This paper was supported by a contract from Build in Canada Innovation Program to CytoGnomix (Serial No. EN579-172270/001/SC). The initial version of ADCI and development of algorithms were supported by the Western Innovation Fund; the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant 371758-2009); US Public Health Service (DART-DOSE CMCR, 5U01AI091173-0); the Canadian Foundation for Innovation; Canada Research Chairs, and CytoGnomix Inc.
Name | Company | Catalog Number | Comments |
Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) | CytoGnomix | NA | ADCI software is released in a binary installation package file for Microsoft Windows 7, 8, 8.1 and 10; 235 Mb of disk storage are required for a typical installation. The software has been tested with Intel or AMD x86-64 processors; at least 1 Gb RAM is recommended. Analyses have been benchmarked on a computer configured with an Intel I7 processor and 16 Gb RAM. Operation of ADCI requires an active license and a USB-based hardware dongle, which must remain plugged in while the software is executing. The dongle encodes the software expiry date. Each time the software is started, this date is read. The software will allow access to the program if the current date and time precedes the expiration time-date stamp. Extending an expired software license can be accomplished by obtaining a new dongle or by renewing the license with an updated key at startup. |
Digital images of metaphase cell nuclei | Examples: Metasystems, Leica Microsystems | M-Search (Metasystems), Cytovision (Leica) software | High resolution TIFF format; typically >250 digital images generated with a microscope imaging capture system (minimum 63x magnification objective, 10x magnification ocular). |
MSI Leopard Pro (recommended, optional) | Micro-Star International | MSI GP62 6QF 480CA Leopard Pro | Multi-core performance workstation. |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved