JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

Subtype-specific Optical Action Potential Recordings in Human Induced Pluripotent Stem Cell-derived Ventricular Cardiomyocytes

Published: September 27th, 2018

DOI:

10.3791/58134

1Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich, 2German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, 3Beth Israel Deaconess Medical Center, Harvard Medical School
* These authors contributed equally

Cardiomyocytes generated from human induced pluripotent stem cells (iPSC-CMs) are an emerging tool in cardiovascular research. Rather than being a homogenous population of cells, the iPSC-CMs generated by current differentiation protocols represent a mixture of cells with ventricular-, atrial-, and nodal-like phenotypes, which complicates phenotypic analyses. Here, a method to optically record action potentials specifically from ventricular-like iPSC-CMs is presented. This is achieved by lentiviral transduction with a construct in which a genetically-encoded voltage indicator is under the control of a ventricular-specific promoter element. When iPSC-CMs are transduced with this construct, the voltage sensor is expressed exclusively in ventricular-like cells, enabling subtype-specific optical membrane potential recordings using time-lapse fluorescence microscopy.

Tags

Keywords Human Induced Pluripotent Stem Cell derived Ventricular Cardiomyocytes

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved