A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes the design and manufacture of a water bridge and its activation as a water fiber. The experiment demonstrates that capillary resonances of the water fiber modulate its optical transmission.
In this report, an optical fiber of which the core is made solely of water, while the cladding is air, is designed and manufactured. In contrast with solid-cladding devices, capillary oscillations are not restricted, allowing the fiber walls to move and vibrate. The fiber is constructed by a high direct current (DC) voltage of several thousand volts (kV) between two water reservoirs that creates a floating water thread, known as a water bridge. Through the choice of micropipettes, it is possible to control the maximal diameter and length of the fiber. Optical fiber couplers, at both sides of the bridge, activate it as an optical waveguide, allowing researchers to monitor the water fiber capillary body waves through transmission modulation and, therefore, deducing changes in surface tension.
Co-confining two important wave types, capillary and electromagnetic, opens a new path of research in the interactions between light and liquid-wall devices. Water-walled microdevices are a million times softer than their solid counterparts, accordingly improving the response to minute forces.
Since the breakthrough of optical fibers in communication, awarded with a Nobel prize in 20091, a series of fiber-based applications grew alongside. Nowadays, fibers are a necessity in laser surgeries2, as well as in coherent X-ray generation3,4, guided-sound5 and supercontinuum6. Naturally, the research on fiber optics expanded from utilizing solids into exploiting liquids for optical wave guiding, where liquid-filled microchannels and laminar flow combine the transportation properties of a liquid with the advantag....
CAUTION: This experiment involves high voltage. It is the reader's responsibility to verify with the safety authorities that their experiment follows regulations before turning on the high voltage.
NOTE: Any kind of polar liquid can be utilized to produce liquid fibers, such as ethanol, methanol, acetone, or water. The polarity of the liquid dictates the stability and diameter of the created fiber23,24. For best results, use deioni.......
The coupling efficiency from a water fiber to a highly multimode fiber can be as high as 54%25,26. The coupling efficiency to a single-mode fiber is up to 12%25,26. Water fibers can be as thin as 1.6 µm in diameter and can have a length of 46 µm (Figure 3)25,26, or they can b.......
To conclude, the major advantage and uniqueness of this technique is creating a fiber which hosts three different kinds of waves: capillary, acoustic, and optical. All three waves oscillate in different regimes, opening the possibility for multi-wave detectors. As an example, airborne nanoparticles affect the surface tension of liquids. Already at the current stage, it is possible to monitor changes in the surface tension through variations in the capillary eigenfrequency. Additionally, water-walled devices are a million.......
The authors have nothing to disclose.
This research was supported by the Israeli Ministry of Science, Technology & Space; ICore: the Israeli Excellence center 'Circle of Light' grant no. 1802/12, and by the Israeli Science Foundation grant no. 2013/15. The authors thank Karen Adie Tankus (KAT) for the helpful editing.
....Name | Company | Catalog Number | Comments |
Deioniyzed Water | 18MOhm resistance | ||
Micropipettes, Borosilicate Glass, round, inner diameter 850 micron | Produstrial.com | #133260 | |
Micropipettes, Borosilicate Glass, round, inner diameter 150 micron | Produstrial.com | #133258 | |
High voltage, low current source, 3kV with 5 mA. | Bertan | Model 215 | |
High voltage, low current source, 8 kV with 0.25 mA. | Home build | ||
Optical fiber | Corning | HI 780 C | 5 meter |
Optical fiber | Thorlabs | FTO 30 | 5 meter |
Optical fiber | Thorlabs | FTO 30 | 5 meter |
Fiber coupled laser | FIS | SMF 28E | |
Photoreceiver | New Port/ New Focus | 1801-FS | with fiber connection |
Oscilloscope | Agilent Technologies | DSO-X 3034A | |
2 Degree of freedom tilt stagestage | New Port/ New Focus | M-562F-TILT | |
3Degree of freedom linear micro translation stage | New Port/ New Focus | M-562F-XYZ | |
A set of magnets | |||
Objective 5X | Mitutoyo | MY5X-802 | |
Objective 20 x | Mitutoyo | MY20X-804 | |
Zoom | Navitar | 12x Zoom | |
Microscope tube | Navitar | 1-6015 standard tube | |
Isopropanol | Sigma Aldrich | 67-63-0 | Spec Grad |
2 x Bare Fiber holder | Thorlabs | T711-250 | |
2 x Translational Stage | Thorlabs | DT12 | |
Block of PMMA for fabricating the water reservoir and pipette holder | 150 x 60 x 10 mm | ||
PTFE-Tape | Gufero | 240453 | |
Fiber coupled, cw Laser Light Source | New Port/ New Focus | TLB-6712 | 765-781 nm |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved