JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Engineering

Design and Fabrication of an Optical Fiber Made of Water

Published: November 8th, 2018

DOI:

10.3791/58174

1Department of Nanoscience and Nanotechnology, Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, 2Department of Material Sciences and Engineering, MIT, 3Centro de Tecnologia Nanofotónica, Universitat Politècnica de València, 4Department of Mechanical Engineering, Technion - Israel Institute of Technology

This protocol describes the design and manufacture of a water bridge and its activation as a water fiber. The experiment demonstrates that capillary resonances of the water fiber modulate its optical transmission.

In this report, an optical fiber of which the core is made solely of water, while the cladding is air, is designed and manufactured. In contrast with solid-cladding devices, capillary oscillations are not restricted, allowing the fiber walls to move and vibrate. The fiber is constructed by a high direct current (DC) voltage of several thousand volts (kV) between two water reservoirs that creates a floating water thread, known as a water bridge. Through the choice of micropipettes, it is possible to control the maximal diameter and length of the fiber. Optical fiber couplers, at both sides of the bridge, activate it as an optical waveguide, allowing researchers to monitor the water fiber capillary body waves through transmission modulation and, therefore, deducing changes in surface tension.

Co-confining two important wave types, capillary and electromagnetic, opens a new path of research in the interactions between light and liquid-wall devices. Water-walled microdevices are a million times softer than their solid counterparts, accordingly improving the response to minute forces.

Since the breakthrough of optical fibers in communication, awarded with a Nobel prize in 20091, a series of fiber-based applications grew alongside. Nowadays, fibers are a necessity in laser surgeries2, as well as in coherent X-ray generation3,4, guided-sound5 and supercontinuum6. Naturally, the research on fiber optics expanded from utilizing solids into exploiting liquids for optical wave guiding, where liquid-filled microchannels and laminar flow combine the transportation properties of a liquid with the advantag....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

CAUTION: This experiment involves high voltage. It is the reader's responsibility to verify with the safety authorities that their experiment follows regulations before turning on the high voltage.

NOTE: Any kind of polar liquid can be utilized to produce liquid fibers, such as ethanol, methanol, acetone, or water. The polarity of the liquid dictates the stability and diameter of the created fiber23,24. For best results, use deioni.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The coupling efficiency from a water fiber to a highly multimode fiber can be as high as 54%25,26. The coupling efficiency to a single-mode fiber is up to 12%25,26. Water fibers can be as thin as 1.6 µm in diameter and can have a length of 46 µm (Figure 3)25,26, or they can b.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To conclude, the major advantage and uniqueness of this technique is creating a fiber which hosts three different kinds of waves: capillary, acoustic, and optical. All three waves oscillate in different regimes, opening the possibility for multi-wave detectors. As an example, airborne nanoparticles affect the surface tension of liquids. Already at the current stage, it is possible to monitor changes in the surface tension through variations in the capillary eigenfrequency. Additionally, water-walled devices are a million.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This research was supported by the Israeli Ministry of Science, Technology & Space; ICore: the Israeli Excellence center 'Circle of Light' grant no. 1802/12, and by the Israeli Science Foundation grant no. 2013/15. The authors thank Karen Adie Tankus (KAT) for the helpful editing.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Deioniyzed Water  18MOhm resistance
Micropipettes, Borosilicate Glass, round, inner diameter 850 micron Produstrial.com #133260
Micropipettes, Borosilicate Glass, round, inner diameter 150 micron Produstrial.com #133258
High voltage, low current source, 3kV with 5 mA. Bertan Model 215
High voltage, low current source,  8 kV with 0.25 mA. Home build
Optical fiber Corning HI 780 C 5 meter
Optical fiber Thorlabs FTO 30 5 meter
Optical fiber Thorlabs FTO 30 5 meter
 Fiber coupled laser FIS SMF 28E
Photoreceiver New Port/ New Focus 1801-FS with fiber connection
Oscilloscope Agilent Technologies DSO-X 3034A
2 Degree of freedom tilt stagestage New Port/ New Focus M-562F-TILT
3Degree of freedom linear micro translation stage   New Port/ New Focus M-562F-XYZ
A set of magnets
Objective 5X Mitutoyo  MY5X-802
Objective 20 x Mitutoyo  MY20X-804
Zoom Navitar 12x Zoom
Microscope tube Navitar 1-6015 standard tube
Isopropanol Sigma Aldrich 67-63-0 Spec Grad
2 x Bare Fiber holder Thorlabs T711-250
2 x Translational Stage Thorlabs DT12
Block of PMMA for fabricating the water reservoir and pipette holder 150 x 60 x 10 mm
PTFE-Tape Gufero 240453
Fiber coupled, cw Laser Light Source New Port/ New Focus TLB-6712 765-781 nm

  1. For Groundbreaking Achievements Concerning the Transmission of Light in Fibers for Optical Communication. The Nobel Prize in Physics Available from: https://www.nobelprize.org/nobel_prizes/physics/laureates/2009/press.html (2009)
  2. Temelkuran, B., Hart, S. D., Benoit, G., Joannopoulos, J. D., Fink, Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature. 420, 650-653 (2002).
  3. Rundquist, A. Phase-Matched Generation of Coherent Soft X-rays. Science. 280, 1412-1415 (1998).
  4. Durfee, C. G., et al. Phase Matching of High-Order Harmonics in Hollow Waveguides. Physical Review Letters. 83, 2187-2190 (1999).
  5. Dainese, P., et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics. 2, 388-392 (2006).
  6. Dudley, J. M. J., Genty, G., Coen, S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics. 78, 1135-1184 (2006).
  7. Wolfe, D. B., et al. Dynamic control of liquid-core/Liquid-cladding optical waveguides. Proceedings of the National Academy of Sciences of the United States of America. , 12434-12438 (2004).
  8. Whitesides, G. M. The origins and the future of microfluidics. Nature. 442, 368-373 (2006).
  9. Ward, J. M., Yang, Y., Chormaic, S. N. Highly Sensitive Temperature Measurements With Liquid-Core Microbubble Resonators. IEEE Photonics Technology Letters. 25, 2350-2353 (2013).
  10. Fuchs, E. E. C., et al. The floating water bridge. Journal of Physics D: Applied Physics. 40, 6112-6114 (2007).
  11. Fuchs, E. C., et al. The Armstrong experiment revisited. The European Physics Journal Special Topics. 223, 959-977 (2013).
  12. Sirghi, L., Szoszkiewicz, R., Riedo, E. Volume of a nanoscale water bridge. Langmuir. 22, 1093-1098 (2006).
  13. Woisetschläger, J., Gatterer, K., Fuchs, E. C. Experiments in a floating water bridge. Experiments in Fluids. 48, 121-131 (2009).
  14. Widom, A., Swain, J., Silverberg, J., Sivasubramanian, S., Srivastava, Y. N. Theory of the Maxwell pressure tensor and the tension in a water bridge. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics. 80, 16301 (2009).
  15. Aerov, A. A. Why the water bridge does not collapse. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. 84, 36314 (2011).
  16. Knight, J. C., Cheung, G., Jacques, F., Birks, T. A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Optics Letters. 22, 1129 (1997).
  17. Spillane, S. M., Kippenberg, T. J., Painter, O. J., Vahala, K. J. Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics. Physical Review Letters. 91, 43902 (2003).
  18. Cohen, L. G., Schneider, M. V. Microlenses for coupling junction lasers to optical fibers. Applied Optics. 13, 89-94 (1974).
  19. Vollmer, F., et al. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods. 5, 591-596 (2008).
  20. Fainman, Y., Lee, L. P., Psaltis, D., Yang, C. . Optofluidics: Fundamentals, Devices, and Applications. , (2010).
  21. He, L., Ozdemir, S. K., Zhu, J., Kim, W., Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotechnology. 6, 428-432 (2011).
  22. Woisetschläger, J., et al. Horizontal bridges in polar dielectric liquids. Experiments in Fluids. 52, 193-205 (2011).
  23. Fuchs, E. C., Wexler, A. D., Agostinho, L. L. F., Ramek, M., Woisetschläger, J. Methanol, Ethanol and Propanol in EHD liquid bridging. Journal of Physics: Conference Series. 329, 12003 (2011).
  24. Douvidzon, M. L., Maayani, S., Martin, L. L., Carmon, T. Light and Capillary Waves Propagation in Water Fibers. Science Reports. 7, 16633 (2017).
  25. . Water Fibers Available from: https://arxiv.org/abs/1609.03362 (2016)

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved