JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

Stereolithographic 3D Printing with Renewable Acrylates

Published: September 12th, 2018

DOI:

10.3791/58177

1Professorship Sustainable Polymers, NHL Stenden University of Applied Sciences, 2Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen

A protocol for additive manufacturing with renewable photopolymer resins on a stereolithography apparatus is presented.

The accessibility of cost-competitive renewable materials and their application in additive manufacturing is essential for an efficient biobased economy. We demonstrate the rapid prototyping of sustainable resins using a stereolithographic 3D printer. Resin formulation takes place by straightforward mixing of biobased acrylate monomers and oligomers with a photoinitiatior and optical absorber. Resin viscosity is controlled by the monomer to oligomer ratio and is determined as a function of shear rate by a rheometer with parallel plate geometry. A stereolithographic apparatus charged with the biobased resins is employed to produce complex shaped prototypes with high accuracy. The products require a post-treatment, including alcohol rinsing and UV irradiation, to ensure complete curing. The high feature resolution and excellent surface finishing of the prototypes is revealed by scanning electron microscopy.

Rapid prototyping enables on-demand production and design freedom and allows the efficient manufacturing of 3D constructs in a layer-by-layer manner1. As a result, 3D printing as a fabrication technique has developed rapidly in recent years2. Various technologies are available, all relying on the translation of virtual models into physical objects, and applying processes such as extrusion, direct energy deposition, powder solidification, sheet lamination and photopolymerization. The latter involves stepwise UV curing of liquid photopolymer resins. In 1986, Hull and co-workers developed the stereolithography apparatus (SL....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

CAUTION: Please consult all relevant material safety data sheets (MSDS) before use.

1. Preparation of Photocurable Resin

NOTE: Please use personal protective equipment (safety glasses, gloves, lab coat) during the following procedure. See our previous work12 for more details on this section.

  1. Pour 50 g of 1,10-decanediol diacrylate (SA5201) in a 500 mL Erlenmeyer flask.
  2. Add 1.0 g of diphenyl(2,4,6-trimethylbenzoyl)phosphi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Four representative resin compositions are displayed in Table 1, along with their average biobased carbon content (BC) derived from the individual BC of the components. The resin viscosity (Figure 1) is influenced by the ratio of acrylate monomers and oligomers and typically demonstrates Newtonian behavior. The mechanical properties of parts manufactured from various resins were determined by stress-strain analysis. Figur.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Additive manufacturing is applied in fabrication of tailor-made prototypes and small series, when the higher production costs per part can compete with conventional processes since there is no need for production of molds and tools. In the last decade, the revenues from services and products related to additive manufacturing have grown exponentially13. The largest fraction of material sales is from photopolymers. The growth attracted attention and initiated the investments of major industries,

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was supported by GreenPAC Polymer Application Centre as part of Project 140413: "3D Printing in Production". We would like to acknowledge Albert Hartman, Corinne van Noordenne, Rens van Leeuwen, Anniek Bruins, Femke Tamminga, Jur van Dijken and Albert Woortman for facilitating the video shooting.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Isobornyl acrylate  Sartomer SA5102 Acrylate monomer
1,10-decanediol diacrylate Sartomer SA5201 Acrylate monomer
Pentaerythritol tetraacrylate Sartomer SA5400 Acrylate monomer
Multifunctional epoxy acrylate Sartomer SA7101 Acrylate oligomer
Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), 97% Sigma Aldrich 415952 Photoinitiator
2,5-bis(5-tert-butyl-benzoxazol-2-yl)thiophene (BBOT), 99% Sigma Aldrich 223999 Optical absorber
Isopropyl alcohol (IPA), 99% Bleko 1010500 For alcohol bath (applied in Form Wash)
Paar Physica MCR300  Anton Paar - Rheometer with parallel plate geometry
Form 2 Printer Formlabs - Desktop SLA 3D printer
Form Wash  Formlabs - Washing station
Form Cure Formlabs - UV oven
Instron 4301 1KN Series IX Instron - Universal testing machine
Philips XL30 ESEM-FEG  Philips - Scanning electron microscope

  1. Van Wijk, A., van Wijk, I. . 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy. , (2015).
  2. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., Spence, D. M. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Analytical Chemistry. 86, 3240-3253 (2014).
  3. Chia, H. N., Wu, B. M. Recent advances in 3D printing of biomaterials. Journal of Biological Engineering. 9, 4 (2015).
  4. Mechels, F. P. W., Feijen, J., Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 31, 6121-6130 (2010).
  5. Skoog, S. A., Goering, P. L., Narayan, R. J. Stereolithography in tissue engineering. Journal of Materials Science: Materials in Medicine. 25, 845-856 (2014).
  6. Bhatia, S. K., Ramadurai, K. W. . 3D Printing and Bio-Based Materials in Global Health. , (2017).
  7. Oskui, S. M., Diamante, G., Liao, C., Shi, W., Gan, J., Schlenk, D., Grover, W. H. Assessing and Reducing the Toxicity of 3D-Printed Parts. Environmental Science & Technology Letters. 3, 1-6 (2016).
  8. Gong, H., Beauchamp, M., Perry, S., Woolley, A. T., Nordin, G. P. Optical approach to resin formulation for 3D printed microfluidics. RSC Advances. 5, 106621-106632 (2015).
  9. Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Advanced Materials. 28, 4449-4454 (2016).
  10. Ligon-Auer, S. C., Schwentenwein, M., Gorsche, C., Stampfl, J., Liska, R. Toughening of photo-curable polymer networks: A review. Polymer Chemistry. 7, 257-286 (2016).
  11. Miao, S., Zhu, W., Castro, N. J., Nowicki, M., Zhou, X., Cui, H., Fisher, J. P., Zhang, L. G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports. 6, 27226 (2016).
  12. Voet, V. S. D., Strating, T., Schnelting, G. H. M., Dijkstra, P., Tietema, M., Xu, J., Woortman, A. J. J., Loos, K., Jager, J., Folkersma, R. Biobased acrylate photocurable resin formulation for stereolithographic 3D printing. ACS Omega. 3, 1403-1408 (2018).
  13. Ligon-Auer, S. C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews. 117, 10212-10290 (2017).
  14. Weng, Z., Zhou, Y., Lin, W., Senthil, T., Wu, L. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites: Part A. 88, 234-242 (2016).
  15. Scalera, F., Esposito Corcione, C., Montagna, F., Sannino, A., Maffezzoli, A. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceramics International. 40, 15455-15462 (2014).
  16. Lee, H., Fang, N. X. Micro 3D Printing using a digital projector and its application in the study of soft materials mechanics. Journal of Visualized Experiments. (69), e4457 (2012).
  17. Huemer, K., Squirrell, J. M., Swader, R., Pelkey, K., LeBert, D. C., Huttenlocher, A., Eliceiri, K. W. Long-term live imaging device for improved experimental manipulation of zebrafish larvae. Journal of Visualized Experiments. (128), e56340 (2017).
  18. Decker, C. Light-induced crosslinking polymerization. Polymer International. 51, 1141-1150 (2002).
  19. Elliot, J. E., Bowman, C. N. Predicting network formation of free radical polymerization of multifunctional monomers. Polymer Reaction Engineering. 10, 1-19 (2002).
  20. Ellakwa, A., Cho, N., Lee, I. B. The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dental Materials. 23, 1229-1235 (2007).
  21. Charton, C., Falk, V., Marchal, P., Pla, F., Colon, P. Influence of Tg, viscosity and chemical structure of monomers on shrinkage stress in light-cured dimethacrylate-based dental resins. Dental Materials. 23, 1447-1459 (2007).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved