JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Tick Microbiome Characterization by Next-Generation 16S rRNA Amplicon Sequencing

Published: August 25th, 2018

DOI:

10.3791/58239

1Department of Biology, San Francisco State University

Here we present a next-generation sequencing protocol for 16S rRNA sequencing which enables identification and characterization of microbial communities within vectors. This method involves DNA extraction, amplification and barcoding of samples through PCR, sequencing on a flow-cell, and bioinformatics to match sequence data to phylogenetic information.

In recent decades, vector-borne diseases have re-emerged and expanded at alarming rates, causing considerable morbidity and mortality worldwide. Effective and widely available vaccines are lacking for a majority of these diseases, necessitating the development of novel disease mitigation strategies. To this end, a promising avenue of disease control involves targeting the vector microbiome, the community of microbes inhabiting the vector. The vector microbiome plays a pivotal role in pathogen dynamics, and manipulations of the microbiome have led to reduced vector abundance or pathogen transmission for a handful of vector-borne diseases. However, translating these findings into disease control applications requires a thorough understanding of vector microbial ecology, historically limited by insufficient technology in this field. The advent of next-generation sequencing approaches has enabled rapid, highly parallel sequencing of diverse microbial communities. Targeting the highly-conserved 16S rRNA gene has facilitated characterizations of microbes present within vectors under varying ecological and experimental conditions. This technique involves amplification of the 16S rRNA gene, sample barcoding via PCR, loading samples onto a flow cell for sequencing, and bioinformatics approaches to match sequence data with phylogenetic information. Species or genus-level identification for a high number of replicates can typically be achieved through this approach, thus circumventing challenges of low detection, resolution, and output from traditional culturing, microscopy, or histological staining techniques. Therefore, this method is well-suited for characterizing vector microbes under diverse conditions but cannot currently provide information on microbial function, location within the vector, or response to antibiotic treatment. Overall, 16S next-generation sequencing is a powerful technique for better understanding the identity and role of vector microbes in disease dynamics.

The resurgence and spread of vector-borne diseases in recent decades pose a serious threat to global human and wildlife health. Effective vaccines are lacking for a majority of these diseases, and control efforts are hindered by the complex biological nature of vectors and vector-host interactions. Understanding the role of microbial interactions within a vector in pathogen transmission can allow for the development of novel strategies which circumvent these challenges. In particular, interactions between vector-associated microbial commensals, symbionts, and pathogens, referred to as the microbiome, may have important consequences for pathogen transmission. Overwhelm....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Tick Collection and Surface Sterilization

  1. Collect ticks by dragging a 1 m2 white cloth over a tick-associated habitat, removing ticks attached to host species, or rearing ticks in the lab15,16. Use fine forceps to manipulate ticks and store them at -80 °C.
  2. Place ticks in the individual PCR tubes and remove surface contaminants by vortexing for 15 s successively with 500 μL of hydrogen peroxide (H2O2

    Log in or to access full content. Learn more about your institution’s access to JoVE content here

A total of 42 ticks from three separate egg clutches and two environmental exposure periods, 0 and 2 weeks in soil, were processed for microbiome sequencing. Each treatment group, considered to be a single clutch and exposure time, contained 6-8 replicate tick samples. These processed tick extracts were loaded onto a next-generation sequencer and yielded 12,885,713 paired-end reads passing filter. Included in this run were 3 negative controls from the extraction step, yielding a total of .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Next-generation sequencing of 16S rRNA has become a standard approach for microbial identification and enabled the study of how vector microbiomes affect pathogen transmission. The protocol outlined here details the use of this method to investigate microbial community assembly in I. pacificus, a vector species for Lyme disease; however, it can easily be applied to study other tick species or arthropod vector species.

Indeed, 16S rRNA sequencing for microbiome analysis has been used b.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by National Science Foundation grants to A.S. (DEB #1427772, 1745411, 1750037).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Item Name of Material/Equipment Company Catalog #
1 DNeasy Blood & Tissue Kit Qiagen 69504
2 Qubit 4 Fluorometer ThermoFisher Scientific Q3326
3 NanoDrop 8000 Spectrophotometer ThermoFisher Scientific ND-8000-GL
4 2x KAPA HiFi HotStart ReadyMix Kapa Biosystems KK2501
5 AMPure XP beads Agen Court A63880 
6 Magnetic Rack ThermoFisher Scientific MR02
6 TE buffer Teknova T0223
7 Nextera Index Kit Illumina FC-121-1011
8 KAPA Library Quantification Kit Roche KK4824
9 MiSeq System Illumina SY-410-1003
10 MiSeq Reagent Kit v3  Illumina MS-102-3001
11 10 mM Tris-HCl with 0.1% Tween 20 Teknova T7724

  1. Dong, Y., Manfredini, F., Dimopoulos, G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. Public Library of Science Pathogens. 5 (5), (2009).
  2. Aliota, M. T., Peinado, S. A., Velez, I. D., Osorio, J. E. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Scientific Reports. 6 (July), 1-7 (2016).
  3. Narasimhan, S., et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host and Microbe. 15 (1), 58-71 (2014).
  4. Clay, K., Fuqua, C. The Tick Microbiome: Diversity, Distribution and Influence of the Internal Microbial Community for a Blood-Feeding Disease Vector. Critical Needs and Gaps in Understanding Prevention, Amelioration, and Resolution of Lyme and Other Tick-Borne Diseases: The Short-Term and Long-Term Outcomes. , 1-22 (2010).
  5. Noda, H., Munderloh, U. G., Kurtti, T. J. Endosymbionts of Ticks and Their Relationship to Wolbachia spp. and Tick-Borne Pathogens of Humans and Animals. Applied and Environmental Microbiology. 63 (10), 3926-3932 (1997).
  6. van Treuren, W., et al. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Applied and Environmental Microbiology. 81 (18), 6200-6209 (2015).
  7. Swei, A., Kwan, J. Y. Tick microbiome and pathogen acquisition altered by host blood meal. The ISME Journal: Multidisciplinary Journal of Microbial Ecology. 11 (3), 813-816 (2017).
  8. Kwan, J. Y., Griggs, R., Chicana, B., Miller, C., Swei, A. Vertical vs. horizontal transmission of the microbiome in a key disease vector, Ixodes pacificus. Molecular Ecology. 26 (23), 6578-6589 (2017).
  9. Narasimhan, S., Fikrig, E. Tick microbiome: The force within. Trends in Parasitology. 31 (7), 315-323 (2015).
  10. Houpikian, P., Raoult, D. Traditional and molecular techniques for the study of emerging bacterial diseases: One laboratory's perspective. Emerging Infectious Diseases. 8 (2), 122-131 (2002).
  11. Kotsilkov, K., Popova, C., Boyanova, L., Setchanova, L., Mitov, I. Comparison of culture method and real-time PCR for detection of putative periodontopathogenic bacteria in deep periodontal pockets. Biotechnology and Biotechnological Equipment. 29 (5), 996-1002 (2015).
  12. Wade, W. Unculturable bacteria - The uncharacterized organisms that cause oral infections. Journal of the Royal Society of Medicine. 95 (2), 81-83 (2002).
  13. Klindworth, A., et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research. 41 (1), 1-11 (2013).
  14. Janda, J. M., Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology. 45 (9), 2761-2764 (2007).
  15. Falco, R. C., Fish, D. A comparison of methods for sampling the deer tick, Ixodes dammini, in a Lyme disease endemic area. Experimental & Applied Acarology. 14 (2), 165-173 (1992).
  16. Patrick, C. D., Hair, J. A. Laboratory rearing procedures and equipment for multi-host ticks (Acarina: Ixodidae). Journal of Medical Entomology. 12 (3), 389-390 (1975).
  17. Köchl, S., Niederstätter, H., Parson, W. DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Methods in Molecular Biology. 297, 13-30 (2005).
  18. Wallace, D. M., Berger, S. L., Kimmel, R. Large- and small- scale phenol extractions. Guide to molecular cloning techniques. 18, 33-41 (1987).
  19. Zeugin, J. A., Hartley, J. L. Ethanol Precipitation of DNA. Focus. 7 (4), 1-2 (1985).
  20. Walsh, P. S., Metzger, D. A., Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques. 10, 506-518 (1991).
  21. Gariepy, T. D., Lindsay, R., Ogden, N., Gregory, T. R. Identifying the last supper: utility of the DNA barcode library for bloodmeal identification in ticks. Molecular Ecology Resources. 12, 646-652 (2012).
  22. Ammazzalorso, A. D., Zolnik, C. P., Daniels, T. J., Kolokotronis, S. O. To beat or not to beat a tick: comparison of DNA extraction methods for ticks (Ixodes scapularis). PeerJ. 3, 1-14 (2015).
  23. Desjardins, P., Conklin, D. NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments. , (2010).
  24. TaKara Bio. . Library Quantification Kit: User Manual. , (2018).
  25. Genohub. . Cluster density optimization on Illumina sequencing instruments. , (2018).
  26. Fadrosh, D. W., et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2 (6), (2014).
  27. Caporaso, G. J., et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 7, 335-336 (2010).
  28. Schloss, P. D., et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. 75, 7537-7541 (2009).
  29. Duguma, D., et al. Developmental succession of the microbiome of Culex mosquitoes Ecological and evolutionary microbiology. BMC Microbiology. 15 (1), 1-13 (2015).
  30. Fagen, J. R. Characterization of the Relative Abundance of the Citrus Pathogen Ca. Liberibacter Asiaticus in the Microbiome of Its Insect Vector, Diaphorina citri, using High Throughput 16S rRNA Sequencing. The Open Microbiology Journal. 6 (1), 29-33 (2012).
  31. Geiger, A., et al. First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina palpalis palpalis) midgut. Infection, Genetics and Evolution. 9 (6), 1364-1370 (2009).
  32. Salter, S. J., et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology. 12 (1), 1-12 (2014).
  33. Rand, K. H., Houck, H. Taq polymerase contains bacterial DNA of unknown origin. Molecular and Cellular Probes. 4, 445-450 (1990).
  34. Grahn, N., Olofsson, M., Ellnebo-Svedlund, K., Monstein, H. J., Jonasson, J. Identification of mixed bacterial DNA contamination in broad-range PCR amplification of 16S rDNA V1 and V3 variable regions by pyrosequencing of cloned amplicons. FEMS Microbiology Letters. 219, 87-91 (2003).
  35. Mohammadi, T., Reesink, H. W., Vandenbroucke-Grauls, C. M., Savelkoul, P. H. Removal of contaminating DNA from commercial nucleic acid extraction kit reagents. Journal of Microbiological Methods. 61, 285-288 (2005).
  36. Weiss, S., Amir, A., Hyde, E. R., Metcalf, J. L., Song, S. J., Knight, R. Tracking down the sources of experimental contamination in microbiome studies. Genome Biology. 15, 564 (2014).
  37. Paulson, J. N., Stine, O. C., Bravo, H. C., Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nature Methods. 10 (12), 1200-1202 (2013).
  38. Weiss, S., et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 5 (1), 1-18 (2017).
  39. McMurdie, P. J., Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. Public Library of Science Computational Biology. 10 (4), (2014).
  40. Edmonds, K., Williams, L. The role of the negative control in microbiome analyses. The Federation of American Societies for Experimental Biology Journal. 23 (Suppl 1), (2017).
  41. Gall, C. A., et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. The ISME Journal: Multidisciplinary Journal of Microbial Ecology. 10, 1846-1855 (2016).
  42. Gofton, A. W., et al. Inhibition of the endosymbiont "Candidatus Midichloria mitochondrii" during 16S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia. Parasites & Vectors. , 1-11 (2015).
  43. Pruesse, E., et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research. 35, 7188-7196 (2007).
  44. DeSantis, T. Z., et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology. 72, 5069-5072 (2006).
  45. Cole, J. R., et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research. 37, D141-D145 (2009).
  46. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Wheeler, D. L. GenBank. Nucleic Acids Research. 34, D16-D20 (2006).
  47. Schloss, P. D. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. Public Library of Science Computational Biology. 6 (7), 19 (2010).
  48. Balvočiute, M., Huson, D. H., SILVA, R. D. P. Greengenes, NCBI and OTT - how do these taxonomies compare?. BMC Genomics. 18 (Suppl 2), 1-8 (2017).
  49. Langille, M. G., et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 31 (9), 814-821 (2013).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved