JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Immunology and Infection

Label-Free Identification of Lymphocyte Subtypes Using Three-Dimensional Quantitative Phase Imaging and Machine Learning

Published: November 19th, 2018



1Department of Physics, University of Cambridge, 2Department of Physics, Korea Advanced Institute of Science and Technology, 3KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, 4Tomocube, Inc., 5Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 6Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 7Department of Applied Physics, Stanford University

We describe a protocol for the label-free identification of lymphocyte subtypes using quantitative phase imaging and a machine learning algorithm. Measurements of 3D refractive index tomograms of lymphocytes present 3D morphological and biochemical information for individual cells, which is then analyzed with a machine-learning algorithm for identification of cell types.

We describe here a protocol for the label-free identification of lymphocyte subtypes using quantitative phase imaging and machine learning. Identification of lymphocyte subtypes is important for the study of immunology as well as diagnosis and treatment of various diseases. Currently, standard methods for classifying lymphocyte types rely on labeling specific membrane proteins via antigen-antibody reactions. However, these labeling techniques carry the potential risks of altering cellular functions. The protocol described here overcomes these challenges by exploiting intrinsic optical contrasts measured by 3D quantitative phase imaging and a machine learning algorithm. Measurement of 3D refractive index (RI) tomograms of lymphocytes provides quantitative information about 3D morphology and phenotypes of individual cells. The biophysical parameters extracted from the measured 3D RI tomograms are then quantitatively analyzed with a machine learning algorithm, enabling label-free identification of lymphocyte types at a single-cell level. We measure the 3D RI tomograms of B, CD4+ T, and CD8+ T lymphocytes and identified their cell types with over 80% accuracy. In this protocol, we describe the detailed steps for lymphocyte isolation, 3D quantitative phase imaging, and machine learning for identifying lymphocyte types.

Lymphocytes can be classified into various subtypes including B, helper (CD4+) T, cytotoxic (CD8+) T, and regulatory T cells. Each lymphocyte type has a different role in the adaptive immune system; for example, B lymphocytes produce antibodies, whereas T lymphocytes detect specific antigens, eliminate abnormal cells, and regulate B lymphocytes. Lymphocyte function and regulation is tightly controlled by and related to various diseases including cancers1, autoimmune diseases2, and viral infections3. Thus, the identification of lymphocyte types is important to understand their pathophysiological ro....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Animal care and experimental procedures were performed under the approval of the Institutional Animal Care and Use Committee of KAIST (KA2010-21, KA2014-01, and KA2015-03). All the experiments in this study were carried out in accordance with the approved guidelines.

1. Lymphocyte Isolation from Mouse Blood

  1. Once a C57BL/6J mouse is euthanized via COinhalation, insert a 26-G needle into the mouse heart and collect 0.3 mL of blood. Directly put blood into a tube wit.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure shows the schematic process of the entire protocol. Using the procedure presented here, we isolated B (n = 149), CD4+ T (n = 95), and CD8+ T (n = 112) lymphocytes. To obtain phase and amplitude information at various angles of illumination, multiple 2D holograms of each lymphocyte were measured by changing the angle of illumination (from -60° to 60°). Typically, 50 holograms can be used to reconstruct a 3D RI tomogram, but the numb.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We present a protocol that enables the label-free identification of lymphocyte types exploiting 3D quantitative phase imaging and machine learning. Critical steps of this protocol are quantitative phase imaging and feature selection. For the optimal holographic imaging, the density of cells should be controlled as described above. Mechanical stability of the cells is also important to obtain a precise 3D RI distribution because floating or vibrational cellular motions will disturb hologram measurements upon illumination .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the KAIST BK21+ Program, Tomocube, Inc., and the National Research Foundation of Korea (2015R1A3A2066550, 2017M3C1A3013923, 2018K000396). Y. Jo acknowledges support from the KAIST Presidential Fellowship and Asan Foundation Biomedical Science Scholarship.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Mouse Daehan Biolink C57BL/6J mice  gender and age-matched, 6 – 8 weeks
Falcon conical centrifuge tube ThermoFisher Scientific 14-959-53A 15 mL
Phosphate-buffered saline  Sigma-Aldrich 806544-500ML
Ammonium-chloride-potassium lysing buffer  ThermoFisher Scientific A1049201
RPMI-1640 medium Sigma-Aldrich R8758
Fetal bovine serum ThermoFisher Scientific 10438018
Antibody BD Biosciences 553140 (RRID:AB_394655) CD16/32 (clone 2.4G2)
Antibody BD Biosciences 555275 (RRID:AB_395699) CD3ε (clone 17A2)
Antibody Biolegnd 100734 (RRID:AB_2075238) CD8α (clone 53-6.7)
Antibody BD Biosciences 557655 (RRID:AB_396770) CD19 (clone 1D3)
Antibody BD Biosciences 557683 (RRID:AB_396793) CD45R/B220 (clone RA3-6B2)
Antibody BD Biosciences 552878 (RRID:AB_394507) NK1.1 (clone PK136)
Antibody eBioscience 11-0041-85 (RRID:AB_464893) CD4 (clone GK1.5)
DAPI  Roche 10236276001 4,6-diamidino-2-phenylindole
Flow cytometry  BD Biosciences Aria II or III 
Imaging chamber Tomocube, Inc. TomoDish
Holotomography Tomocube, Inc. HT-1H
Holotomography imaging software Tomocube, Inc. TomoStudio
Image professing software MathWorks Matlab R2017b

  1. Alizadeh, A. A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 403 (6769), 503 (2000).
  2. Von Boehmer, H., Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nature Immunology. 11 (1), 14 (2010).
  3. Sáez-Cirión, A., et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proceedings of the National Academy of Sciences. 104 (16), 6776-6781 (2007).
  4. Fischer, K., et al. Isolation and characterization of human antigen-specific TCRαβ+ CD4-CD8-double-negative regulatory T cells. Blood. 105 (7), 2828-2835 (2005).
  5. Yoon, J., et al. Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Scientific Reports. 7 (1), 6654 (2017).
  6. Popescu, G. . Quantitative phase imaging of cells and tissues. , (2011).
  7. Lee, K., et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors. 13 (4), 4170-4191 (2013).
  8. Kim, D., et al. Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging. bioRxiv. , 106328 (2017).
  9. Kim, K., et al. Optical diffraction tomography techniques for the study of cell pathophysiology. Journal of Biomedical Photonics & Engineering. 2 (2), (2016).
  10. Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Communications. 1 (4), 153-156 (1969).
  11. Kus, A., Dudek, M., Kemper, B., Kujawinska, M., Vollmer, A. Tomographic phase microscopy of living three-dimensional cell cultures. Journal of Biomedical Optics. 19 (4), 046009 (2014).
  12. Kim, T., et al. White-light diffraction tomography of unlabelled live cells. Nature Photonics. 8 (3), 256 (2014).
  13. Simon, B., et al. Tomographic diffractive microscopy with isotropic resolution. Optica. 4 (4), 460-463 (2017).
  14. Kim, Y., et al. Profiling individual human red blood cells using common-path diffraction optical tomography. Scientific Reports. 4, (2014).
  15. Park, H., et al. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging. Scientific Reports. 6, (2016).
  16. Lee, S., et al. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Scientific Reports. 7, (2017).
  17. Merola, F., et al. Tomographic flow cytometry by digital holography. Light-Science & Applications. 6, (2017).
  18. Park, Y., et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proceedings of the National Academy of Sciences. 105, 13730-13735 (2008).
  19. Park, H., et al. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy. Scientific Reports. 5, 10827 (2015).
  20. Chandramohanadas, R., et al. Biophysics of malarial parasite exit from infected erythrocytes. Public Library of Science ONE. 6 (6), 20869 (2011).
  21. Yoon, J., et al. Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomedical Optics Express. 6 (10), 3865-3875 (2015).
  22. Kim, K., et al. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Scientific Reports. 6, 36815 (2016).
  23. Kim, D., et al. Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography. Methods. , (2017).
  24. Lenz, P., et al. Multimodal Quantitative Phase Imaging with Digital Holographic Microscopy Accurately Assesses Intestinal Inflammation and Epithelial Wound Healing. Journal of Visualized Experiments. (115), (2016).
  25. Huang, J., Guo, P., Moses, M. A. A Time-lapse, Label-free, Quantitative Phase Imaging Study of Dormant and Active Human Cancer Cells. Journal of Visualized Experiments. (132), (2018).
  26. Yang, S. A., Yoon, J., Kim, K., Park, Y. Measurements of morphological and biochemical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry Part A. 91 (5), 510-518 (2017).
  27. Cotte, Y., et al. Marker-free phase nanoscopy. Nature Photonics. 7 (2), 113-117 (2013).
  28. Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B., Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nature Communications. 8 (1), 210 (2017).
  29. Kwon, S., et al. Mitochondria-targeting indolizino [3, 2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity. European Journal of Medicinal Chemistry. 148, 116-127 (2018).
  30. Bennet, M., Gur, D., Yoon, J., Park, Y., Faivre, D. A Bacteria-Based Remotely Tunable Photonic Device. Advanced Optical Materials. , (2016).
  31. Kim, T. I., et al. Antibacterial Activities of Graphene Oxide-Molybdenum Disulfide Nanocomposite Films. ACS Applied Materials & Interfaces. 9 (9), 7908-7917 (2017).
  32. Bedrossian, M., Barr, C., Lindensmith, C. A., Nealson, K., Nadeau, J. L. Quantifying Microorganisms at Low Concentrations Using Digital Holographic Microscopy (DHM). Journal of Visualized Experiments. (129), (2017).
  33. Jo, Y., et al. Quantitative Phase Imaging and Artificial Intelligence: A Review. arXiv preprint. , (2018).
  34. Javidi, B., Moon, I., Yeom, S., Carapezza, E. Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography. Optics Express. 13 (12), 4492-4506 (2005).
  35. Jo, Y., et al. Label-free identification of individual bacteria using Fourier transform light scattering. Optics Express. 23 (12), 15792-15805 (2015).
  36. Jo, Y., et al. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering. Scientific Reports. 4, 5090 (2014).
  37. Jo, Y., et al. Holographic deep learning for rapid optical screening of anthrax spores. Science Advances. 3 (8), 1700606 (2017).
  38. Mirsky, S. K., Barnea, I., Levi, M., Greenspan, H., Shaked, N. T. Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytometry Part A. 91 (9), 893-900 (2017).
  39. Roitshtain, D., et al. Quantitative phase microscopy spatial signatures of cancer cells. Cytometry Part A. 91 (5), 482-493 (2017).
  40. Lam, V. K., Nguyen, T. C., Chung, B. M., Nehmetallah, G., Raub, C. B. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning. Cytometry Part A. , (2017).
  41. Pavillon, N., Hobro, A. J., Akira, S., Smith, N. I. Noninvasive detection of macrophage activation with single-cell resolution through machine learning. Proceedings of the National Academy of Sciences. , (2018).
  42. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of Specific Cell Population by Fluorescence Activated Cell Sorting (FACS). Journal of Visualized Experiments. (41), e1546 (2010).
  43. Takeda, M., Ina, H., Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America. 72 (1), 156-160 (1982).
  44. Debnath, S. K., Park, Y. Real-time quantitative phase imaging with a spatial phase-shifting algorithm. Optics Letters. 36 (23), 4677-4679 (2011).
  45. Kim, K., et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. Journal of Biomedical Optics. 19 (1), 011005 (2013).
  46. Vercruysse, D., et al. Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer. Lab on a Chip. 15 (4), 1123-1132 (2015).
  47. Kim, K., et al. Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging. Biomedical Optics Express. 8 (12), 5688-5697 (2017).
  48. Shin, S., Kim, D., Kim, K., Park, Y. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. arXiv preprint. , (2018).
  49. Chowdhury, S., Eldridge, W. J., Wax, A., Izatt, J. A. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy. Biomedical Optics Express. 8 (5), 2496-2518 (2017).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved