Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Diffusive convection (DC) widely occurs in natural processes and engineering applications, characterized by a series of staircases with homogeneous convecting layers and stratified interfaces. An experimental procedure is described to simulate the evolution process of the DC staircase structure, including the generation, development and disappearance, in a rectangular tank.

Abstract

Diffusive convection (DC) occurs when the vertical stratified density is controlled by two opposing scalar gradients that have distinctly different molecular diffusivities, and the larger- and smaller- diffusivity scalar gradients have negative and positive contributions for the density distribution, respectively. The DC occurs in many natural processes and engineering applications, for example, oceanography, astrophysics and metallurgy. In oceans, one of the most remarkable features of DC is that the vertical temperature and salinity profiles are staircase-like structure, composed of consecutive steps with thick homogeneous convecting layers and relatively thin and high-gradient interfaces. The DC staircases have been observed in many oceans, especially in the Arctic and Antarctic Oceans, and play an important role on the ocean circulation and climatic change. In the Arctic Ocean, there exist basin-wide and persistent DC staircases in the upper and deep oceans. The DC process has an important effect on diapycnal mixing in the upper ocean and may significantly influence the surface ice-melting. Compared to the limitations of field observations, laboratory experiment shows its unique advantage to effectively examine the dynamic and thermodynamic processes in DC, because the boundary conditions and the controlled parameters can be strictly adjusted. Here, a detailed protocol is described to simulate the evolution process of DC staircase structure, including its generation, development and disappearance, in a rectangular tank filled with stratified saline water. The experimental setup, evolution process, data analysis, and discussion of results are described in detail.

Introduction

Double diffusive convection (DDC) is one of the most important vertical mixing processes. It occurs when the vertical density distribution of the stratified water column is controlled by two or more scalar components gradients of opposite directions, where the components have distinctly different molecular diffusivities1. It widely occurs in oceanography2, the atmosphere3, geology4, astrophysics5, material science6, metallurgy7, and architectural engineering8. DDC is present in a....

Protocol

1. Working Tank

Note: The experiment is carried out in a rectangular tank. The tank includes top and bottom plates and a side wall. The top and bottom plates are made of copper with electroplated surfaces. There is a water chamber within the top plate. An electric heating pad is inserted in the bottom plate. The side wall is made of transparent Plexiglas. The tank size is Lx = 257 mm (length), Ly = 65 mm (width) and Lz = 257 mm (height). The thickness of the side.......

Representative Results

Figure 1 shows the schematic of the experimental setup. Its components are described in the protocol. The main parts are shown in Figure 1a and the detailed working tank is shown in Figure 1b. Figure 2 shows the temperature changes at the bottom (Tb, the red curve) and top (Tt, the black curve) plates. It is indicated that the temperature of the two plates are almost the same as th.......

Discussion

In this paper a detailed experimental protocol is described to simulate the thermohaline DC staircase structures in a rectangular tank. An initial linear density stratification of working fluid is constructed using the two-tank method. The top plate is kept at a constant temperature and the bottom one at constant heat flux. The whole evolution process of the DC staircase, including its generation, development, mergence, and disappearance, are visualized with the shadowgraph technique, and the variances of the temperature.......

Acknowledgements

This work was supported by the Chinese NSF grants (41706033, 91752108 and 41476167), Grangdong NSF grants (2017A030313242 and 2016A030311042) and LTO grant (LTOZZ1801).

....

Materials

NameCompanyCatalog NumberComments
Rectangular tankCustom made part
PlexiglasCustom made part
Electric heating padCustom made part
Distilled waterMultiple suppliers
Optical tableLiansheng Inc.MRT-P/B
ThermiostorsCustom made part
Digital multimeterKeithley IncModel 2700
Micro-scale conductivity and temperature instrument (MSCTI)PME. Inc.Model 125
Multifunction data acquisition (MDA)MCC. Inc.USB-2048
Motorized precision translation stage (MPTS)Thorlabs Inc.LTS300
Tracing paperMultiple suppliers
LED lampMultiple suppliers
CamcorderSony Inc.XDR-XR550
De-gassed fresh waterCustom made part
Saline waterCustom made part
Flexible tubeMultiple suppliers
Electric magnetic stirrer Meiyingpu Inc.MYP2011-100
Peristaltic pumpZhisun Inc.DDBT-201
Refrigerated circulatorPolyscience Inc.Model 9702
Plastic soft tubeMultiple suppliers
Direct-current power supplyGE Inc.GPS-3030
MatlabMathWorks Inc.R2012a

References

  1. Turner, J. S. . Buoyancy Effects in Fluids. , 367 (1973).
  2. Schmitt, R. W. Double diffusion in oceanography. Annual Review of Fluid Mechanics. 26, 255-285 (1994).
  3. Turner, J. S., Gustafson, L. B.

Explore More Articles

Diffusive ConvectionStaircase StructuresEvolutionExperimental SetupWorking TankThermistorsConductivity And Temperature SensorShadowgraph TechniqueWorking Fluid

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved