JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Detection and Isolation of Apoptotic Bodies to High Purity

Published: August 12th, 2018



1Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University

A workflow using flow cytometry or differential centrifugation is developed to detect, quantify and isolate apoptotic bodies from an apoptotic sample to high purity.

Apoptotic bodies (ApoBDs), microvesicles and exosomes are the key members of the extracellular vesicle family, with ApoBDs being one of the largest type. It has been proposed that ApoBDs can aid cell clearance as well as intercellular communication through trafficking biomolecules. Conventional approaches used for the identification and isolation of ApoBDs are often limited by the lack of accurate quantification and low sample purity. Here, we describe a workflow to confirm the induction of apoptosis, validate ApoBD formation, and isolate ApoBDs to high purity. We will also outline and compare fluorescence-activated cell sorting (FACS) and differential centrifugation based approaches to isolate ApoBDs. Furthermore, the purity of isolated ApoBDs will be confirmed using a previously establish flow cytometry-based staining and analytical method. Taken together, using the described approach, THP-1 monocyte apoptosis and apoptotic cell disassembly was induced and validated, and ApoBD generated from THP-1 monocytes were isolated to a purity of 97-99%.

Apoptosis, a well-studied form of programmed cell death, is required to maintain physiological homeostasis and remove potentially harmful cells within the human body1. After the induction of apoptosis, apoptotic cells (ApoCells) can undergo a series of morphological changes and disassemble into small membrane-bound vesicles termed ApoBDs. Overall, this process is known as apoptotic cell disassembly and can be divided into 3 distinct steps based on morphology2,3. Step 1 (plasma membrane blebbing) is characterized by the formation of balloon-like structures on the cell surface known as bl....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Induction of Apoptosis

  1. Centrifuge cell sample at 300 x g for 5 min and discard supernatant to remove any pre-existing cell debris.
    NOTE: When using adherent cells, seed cells in advance and wash with 1x phosphate-buffered solution (PBS) prior to apoptosis induction.
  2. Determine cell number and collect cells.
    NOTE: Depending on the assay post-isolation, we recommend a starting cell number of at least 1 x 107 cells.
  3. Resuspend in complete media (respective medium con.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Using the procedure outlined here, THP-1 monocyte apoptosis was induced and ApoBDs were detected and isolated via either a FACS-based or a differential centrifugation approach (Figure 1). Firstly, apoptosis was induced by UV irradiation and samples were collected after 2-3 h of incubation when cells exhibited apoptotic morphologies, including blebbing, apoptotic membrane protrusion formation and the generation of ApoBDs6. A TO-PRO-3 an.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Since its early description in the 1950s, the field of apoptosis has advanced markedly, becoming a prominent research area. Despite the broad interest and extensive efforts, certain aspects of apoptosis, in particular the formation of ApoBDs, have not been well studied due to the lack of appropriate methodologies. These notably include the limitation in tracking apoptosis progression and ApoBD formation simultaneously using the traditional flow cytometry A5/PI analysis and the impurities of ApoBD isolation. We have recen.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This worked was supported by grants from National Health and Medical Research Council (GNT1125033 and GNT1140187) and Australian Research Council (DP170103790) to I.K.H.P.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Cells e.g. cultured human THP-1 monocytes (clone number: TIB-202) ATCC -
RPMI 1640 medium Life Technologies 22400-089
Penicillin-streptomycin mixture Life Technologies 15140122
FSC Gibco 10099-141
1x PBS - -
Annexin V FITC BD Bioscience -
TO-PRO-3 iodide Life Technologies T3605 TO-PRO-3 may cause skin, eye and respiratory irration. Avoid direct contact.
10x Annexin V binding buffer BD Bioscience 556454
EDTA Sigma-Aldrich 1001710526
Centrifuge tube (15 mL) Cellstar 188271
Microcentrifuge tube (1.5 mL) Sarstedt 72.690.001
Tissue culture incubator (37 °C, 5% CO2) - -
Centrifuge Beckman Coulter 392932
FACS ARIA III Flow cytometer, configured with two lasers for FITC and APC detection BD Bioscience -
FACS Canto II Flow cytometer, configured with two lasers for FITC and APC detection BD Bioscience -
FACS Diva 6.1.1 software BD Bioscience -
FlowJo 8.8.6 software - -
 UV Stratalinker 1800 Stratagene -

  1. Poon, I. K., Lucas, C. D., Rossi, A. G., Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews. Immunology. 14, 166-180 (2014).
  2. Atkin-Smith, G. K., Poon, I. K. Disassembly of the Dying: Mechanisms and Functions. Trends in Cell Biology. 27, 151-162 (2017).
  3. Tixeira, R., et al. Defining the morphologic features and products of cell disassembly during apoptosis. Apoptosis: An International Journal on Programmed Cell Death. 22, 475-477 (2017).
  4. Sebbagh, M., et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biology. 3, 346-352 (2001).
  5. Coleman, M. L., et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biology. 3, 339-345 (2001).
  6. Atkin-Smith, G. K., et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nature Communications. 6, 7439 (2015).
  7. Poon, I. K., et al. Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature. 507, 329-334 (2014).
  8. Moss, D. K., Betin, V. M., Malesinski, S. D., Lane, J. D. A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. Journal of Cell Science. 119, 2362-2374 (2006).
  9. Kerr, J. F., Wyllie, A. H., Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer. 26, 239-257 (1972).
  10. Witasp, E., et al. Bridge over troubled water: milk fat globule epidermal growth factor 8 promotes human monocyte-derived macrophage clearance of non-blebbing phosphatidylserine-positive target cells. Cell Death and Differentiation. 14, 1063-1065 (2007).
  11. Orlando, K. A., Stone, N. L., Pittman, R. N. Rho kinase regulates fragmentation and phagocytosis of apoptotic cells. Experimental Cell Research. 312, 5-15 (2006).
  12. Holmgren, L., et al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood. 93, 3956-3963 (1999).
  13. Zernecke, A., et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling. 2, ra81 (2009).
  14. Schiller, M., et al. Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death and Differentiation. 15, 183-191 (2008).
  15. Elamin, M. H., et al. Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Molecular Carcinogenesis. 49, 302-314 (2010).
  16. Sagulenko, V., et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death and Differentiation. 20, 1149-1160 (2013).
  17. Crescitelli, R., et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. Journal of Extracellular Vesicles. 2, (2013).
  18. Turiak, L., et al. Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice. Journal of Proteomics. 74, 2025-2033 (2011).
  19. Vermes, I., Haanen, C., Steffens-Nakken, H., Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of Immunological Methods. 184, 39-51 (1995).
  20. Jiang, L., et al. Monitoring the progression of cell death and the disassembly of dying cells by flow cytometry. Nature Protocols. 11, 655-663 (2016).
  21. Berda-Haddad, Y., et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1alpha. Proceedings of the National Academy of Sciences of the United States of America. 108, 20684-20689 (2011).
  22. Lleo, A., et al. Shotgun proteomics: identification of unique protein profiles of apoptotic bodies from biliary epithelial cells. Hepatology. 60, 1314-1323 (2014).
  23. Atkin-Smith, G. K., et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Scientific Reports. 7, 39846 (2017).
  24. Jiang, L., et al. Determining the contents and cell origins of apoptotic bodies by flow cytometry. Scientific Reports. 7, 14444 (2017).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved