JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Imaging Cell Interaction in Tracheal Mucosa During Influenza Virus Infection Using Two-photon Intravital Microscopy

Published: August 17th, 2018

DOI:

10.3791/58355

1Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 2Graduate School of Cellular and Molecular Sciences, Faculty of Medicine, University of Bern, 3Institute of Computational Science, Università della Svizzera italiana (USI)
* These authors contributed equally

In this study, we present a protocol to perform two-photon intravital imaging and cell interaction analysis in the murine tracheal mucosa after infection with influenza virus. This protocol will be relevant for researchers studying immune cell dynamics during respiratory infections.

The analysis of cell-cell or cell-pathogen interaction in vivo is an important tool to understand the dynamics of the immune response to infection. Two-photon intravital microscopy (2P-IVM) allows the observation of cell interactions in deep tissue in living animals, while minimizing the photobleaching generated during image acquisition. To date, different models for 2P-IVM of lymphoid and non-lymphoid organs have been described. However, imaging of respiratory organs remains a challenge due to the movement associated with the breathing cycle of the animal.

Here, we describe a protocol to visualize in vivo immune cell interactions in the trachea of mice infected with influenza virus using 2P-IVM. To this purpose, we developed a custom imaging platform, which included the surgical exposure and intubation of the trachea, followed by the acquisition of dynamic images of neutrophils and dendritic cells (DC) in the mucosal epithelium. Additionally, we detailed the steps needed to perform influenza intranasal infection and flow cytometric analysis of immune cells in the trachea. Finally, we analyzed neutrophil and DC motility as well as their interactions during the course of a movie. This protocol allows for the generation of stable and bright 4D images necessary for the assessment of cell-cell interactions in the trachea.

Two-photon intravital microscopy (2P-IVM) is an effective technique for real time imaging of cell-to-cell interactions as they occur in their natural environment1. One of the main advantages of this method is that it allows the study of cellular processes at a greater specimen depth (500 µm to 1 mm) compared with other traditional imaging techniques2. At the same time, the use of two low-energy photons generated by the two-photon laser minimizes the tissue photo-damage typically associated with the image acquisition process2. During the last decade, 2P-IVM has been applied to study different ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All animal procedures involving mice were performed in accordance with the Swiss Federal Veterinary Office guidelines and animal protocols were approved by the local veterinarian authorities.

1. Influenza Infection of CD11c-YFP Mice

  1. Biosafety
    NOTE: The mouse adapted strain of influenza A/Puerto Rico/8/34 H1N1 (PR8) was grown in fertilized eggs, purified and titrated as previously described21. All the steps involving infected animals o.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this work, we described a detailed protocol to study in vivo the motility and the interactions between neutrophils and DC during influenza infection in murine trachea (Figure 3A). To this purpose, we isolated CFP+ neutrophils (92% purity; Figure 3B) from CK6-ECFP mice and we adoptively transferred them into a CD11c-YFP mouse infected with influenza. After that, we performed 2P-IVM of the trachea at day 3 p........

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work presents a detailed protocol for the generation of 4D images showing the migration of adoptively transferred neutrophils and their interactions with DC during an influenza infection in the mouse trachea. The described 2P-IVM model will be relevant to study immune cell dynamics during an infection in the airways.

Recently, several models based on the visualization of cell dynamics in the airways have been developed9,10,

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the Swiss National Foundation (SNF) grants (176124, 145038, and 148183), the European Commission Marie Curie Reintegration Grant (612742), and the SystemsX.ch for a grant to D.U.P. (2013/124).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Gigasept instru AF Schülke & Mayr GmbH 4% solution
CD11c-YFP mice Jackson Laboratories 008829 mice were bred in-house
CK6-ECFP mice Jackson Laboratories 004218 mice were bred in-house
1 X Dulbecco's Phosphate Buffered Saline modified without Calcium Choride and Magnesium Chloride Sigma D8537-500ML
10 X Dulbecco's Phosphate Buffered Saline modified without Calcium Choride and Magnesium Chloride Sigma D1408-500ML
Percoll PLUS Sigma E0414-1L Store at 4°C
Ketamin Labatec Labatec Pharma 7680632310024 Store at RT, store at 4°C when in solution of ket/xyl mixture
Rompun 2% (Xylazin) Bayer 6293841.00.00 Store at RT, store at 4°C when in solution of ket/xyl mixture
26 G 1 mL Sub-Q BD Plastipak BD Plastipak 305501
30 G 0,3 mL BD Micro-Fine Insulin Syringes BD 324826
Falcon 40 µm Cell Strainer Corning 352340
2 mL Syringes BD Plastipak 300185
Microlance 3 18 G needles BD 304622
Introcan Safety 20G (catheter) Braun 4251652.01
6 Well Cell Culture Cluster Costar 3516
RPMI medium 1640 + HEPES (1X) ThermoFisher Scientific 42401-018 Store at 4°C
Liberase TL Research Grade Roche 5401020001 Store at -20°C / collagenase (I and II) mixture
DNAse I Amresco (VWR) 0649-50KU Store at -20°C
CellTrace Violet stain ThermoFisher Scientific C34557 Store at -20°C
EDTA Sigma EDS-500G
Fetal Bovine Serum Gibco 10270-106 Store at -20°C
PE-10 Micro Medical Tubing 2Biological Instruments SNC #BB31695-PE/1
Surgical Plastic Tape M Plast
Viscotears Bausch & Lomb Store at RT
Plasticine Ohropax
High Tolerance Glass Coverslip 15mm Round Warner Instruments 64-0733
SomnoSuite Portable Animal Anesthesia System Kent Scientific SS-01
Nuvo Lite mark 5 GCE medline 14111211
MiniTag (gaseous anesthesia and heating bench) Tem Sega
SURGICAL BOARD University of Bern
TrimScope II Two-photon microscope LaVision Biotec
Chameleon Vision Ti:Sa lasers Coherent Inc.
25X NA 1.05 water immersion objective Olympus XLPLN25XWMP2
The Cube&The Box incubation chamber and temperature controller Life imaging Services
Imaris 9.1.0 Bitplane Imaging software
GraphPad Prism 7 GraphPad Statistical software

  1. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nature Methods. 2 (12), 932-940 (2005).
  2. Zipfel, W. R., Williams, R. M., Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature biotechnology. 21 (11), 1369-1377 (2003).
  3. Fein, M. R., Egeblad, M. Caught in the act: revealing the metastatic process by live imaging. Disease Models & Mechanisms. 6 (3), 580-593 (2013).
  4. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L., Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neuroscience. 13 (11), 1433-1440 (2010).
  5. Cahalan, M. D., Parker, I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annual review of immunology. 26, 585-626 (2008).
  6. Germain, R. N., Robey, E. A., Cahalan, M. D. A Decade of Imaging Cellular Motility and Interaction Dynamics in the Immune System. Science. 336 (6089), 1676-1681 (2012).
  7. Coombes, J. L., Robey, E. A. Dynamic imaging of host-pathogen interactions in vivo. Nature Reviews Immunology. 10 (5), 353-364 (2010).
  8. Pulendran, B., Maddur, M. S. Innate Immune Sensing and Response to Influenza. Life Science Journal. 6 (4), 23-71 (2014).
  9. Lim, K., et al. Neutrophil trails guide influenza- specific CD8 + T cells in the airways. Science. 349 (6252), (2015).
  10. Kim, J. K., et al. In vivo imaging of tracheal epithelial cells in mice during airway regeneration. American journal of respiratory cell and molecular biology. 47 (6), 864-868 (2012).
  11. Kretschmer, S., et al. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways. Laboratory investigation; a journal of technical methods and pathology. 96 (8), 918-931 (2016).
  12. Veres, T. Z., et al. Intubation-free in vivo imaging of the tracheal mucosa using two-photon microscopy. Scientific Reports. 7 (1), 694 (2017).
  13. Looney, M. R., et al. Stabilized imaging of immune surveillance in the mouse lung. Nature. 8 (1), 91-96 (2011).
  14. Thornton, E. E., Krummel, M. F., Looney, M. R. Live Imaging of the Lung. Current Protocols in Cytometry. 60 (1), (2012).
  15. Tabuchi, A., Mertens, M., Kuppe, H., Pries, A. R., Kuebler, W. M. Intravital microscopy of the murine pulmonary microcirculation. Journal of Applied Physiology. 104 (2), 338-346 (2008).
  16. Fiole, D., et al. Two-photon intravital imaging of lungs during anthrax infection reveals long-lasting macrophage-dendritic cell contacts. Infection and immunity. 82 (2), 864-872 (2014).
  17. Secklehner, J., Lo Celso, C., Carlin, L. M. Intravital microscopy in historic and contemporary immunology. Immunology and Cell Biology. 95 (6), 506-513 (2017).
  18. Lambrecht, B. N., Hammad, H. Lung Dendritic Cells in Respiratory Viral Infection and Asthma: From Protection to Immunopathology. Annual Review of Immunology. 30 (1), 243-270 (2012).
  19. Camp, J. V., Jonsson, C. B. A role for neutrophils in viral respiratory disease. Frontiers in Immunology. 8, (2017).
  20. van Gisbergen, K. P. J. M., Sanchez-Hernandez, M., Geijtenbeek, T. B. H., van Kooyk, Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. The Journal of experimental medicine. 201 (8), 1281-1292 (2005).
  21. Gonzalez, S. F., et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nature Immunology. 11 (5), 427-434 (2010).
  22. Lindquist, R. L., et al. Visualizing dendritic cell networks in vivo. Nature immunology. 5 (12), 1243-1250 (2004).
  23. Li, H., et al. Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells. Cellular and Molecular Immunology. 10 (2), 159-164 (2013).
  24. Tran Cao, H. S., et al. Development of the transgenic cyan fluorescent protein (CFP)-expressing nude mouse for "technicolor" cancer imaging. Journal of Cellular Biochemistry. 107 (2), 328-334 (2009).
  25. Jaber, S. M., et al. Dose regimens, variability, and complications associated with using repeat-bolus dosing to extend a surgical plane of anesthesia in laboratory mice. Journal of the American Association for Laboratory Animal Science JAALAS. 53 (6), 684-691 (2014).
  26. Pizzagalli, D. U., et al. Leukocyte Tracking Database, a collection of immune cell tracks from intravital 2-photon microscopy videos. Scientific Data. , (2018).
  27. Sommer, C., Straehle, C., Kothe, U., Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. , 230-233 (2011).
  28. Beltman, J. B., Marée, A. F. M., De Boer, R. J. Analysing immune cell migration. Nature Reviews Immunology. 9 (11), 789-798 (2009).
  29. Keller, H. U. Motility, cell shape, and locomotion of neutrophil granulocytes. Cell motility. 3 (1), 47-60 (1983).
  30. Sumen, C., Mempel, T. R., Mazo, I. B., von Andrian, U. H. Intravital Microscopy. Immunity. 21 (3), 315-329 (2004).
  31. Lambert Emo, K., et al. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen. PLOS Pathogens. 12 (9), e1005881 (2016).
  32. Kjos, M., et al. Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions. Journal of bacteriology. 197 (5), 807-818 (2015).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved