JoVE Logo

Sign In

Abstract

Environment

A Precise and Autonomous System for the Detection of Insect Emergence Patterns

Published: January 9th, 2019

DOI:

10.3791/58362

1Department of Biological Sciences, North Dakota State University, 2School of Life Sciences, Arizona State University, 3Red River Valley Agricultural Research Center, USDA-ARS

Abstract

Existing systems to measure insect emergence patterns have limitations; they are only partially automated and are limited in the maximum number of emerging insects they can detect. In order to obtain precise measurement of insect emergence, it is necessary for systems to be semi-automated and able to measure large numbers of emerging insects. We addressed these issues by designing and building a system that is automated and can measure emergence of up to 1200 insects. We modified the existing "falling-ball" system using Arduino microcontrollers to automate data collection and expand the sample size through multiple data channels. Multiple data channels enable the user to not only increase their sample size, but also allows for multiple treatments to be run simultaneously in a single experiment. Furthermore, we created an R script to automatically visualize the data as a bubble plot, while also calculating the median day and time of emergence. The current system was designed using 3D printing so the user can modify the system to be adjusted for different species of insects. The goal of this protocol is to investigate important questions in chronobiology and stress physiology, using this precise and automated system to measure insect emergence patterns.

Explore More Videos

Keywords Insect Emergence Patterns

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved