A subscription to JoVE is required to view this content. Sign in or start your free trial.
We describe a protocol to measure vortex formation time, an index of left ventricular filling efficiency, using standard transesophageal echocardiography techniques in patients undergoing cardiac surgery. We apply this technique to analyze vortex formation time in several groups of patients with differing cardiac pathologies.
Trans-mitral blood flow produces a three-dimensional rotational body of fluid, known as a vortex ring, that enhances the efficiency of left ventricular (LV) filling compared with a continuous linear jet. Vortex ring development is most often quantified with vortex formation time (VFT), a dimensionless parameter based on fluid ejection from a rigid tube. Our group is interested in factors that affect LV filling efficiency during cardiac surgery. In this report, we describe how to use standard two-dimensional (2D) and Doppler transesophageal echocardiography (TEE) to noninvasively derive the variables needed to calculate VFT. We calculate atrial filling fraction (β) from velocity-time integrals of trans-mitral early LV filling and atrial systole blood flow velocity waveforms measured in the mid-esophageal four-chamber TEE view. Stroke volume (SV) is calculated as the product of the diameter of the LV outflow track measured in the mid-esophageal long axis TEE view and the velocity-time integral of blood flow through the outflow track determined in the deep transgastric view using pulse-wave Doppler. Finally, mitral valve diameter (D) is determined as the average of major and minor axis lengths measured in orthogonal mid-esophageal bicommissural and long axis imaging planes, respectively. VFT is then calculated as 4 × (1-β) × SV/(πD3). We have used this technique to analyze VFT in several groups of patients with differing cardiac abnormalities. We discuss our application of this technique and its potential limitations and also review our results to date. Noninvasive measurement of VFT using TEE is straightforward in anesthetized patients undergoing cardiac surgery. The technique may allow cardiac anesthesiologists and surgeons to assess the impact of pathological conditions and surgical interventions on LV filling efficiency in real time.
Fluid mechanics is a critical yet often underappreciated determinant of left ventricular (LV) filling. A three-dimensional rotational body of fluid, known as a vortex ring, is generated whenever a fluid traverses an orifice1,2,3. This vortex ring improves the efficiency of fluid transport compared with a continuous linear jet4. Movement of blood through the mitral valve during early LV filling causes a vortex ring to form5,6,7,8
The Institutional Review Board of the Clement J. Zablocki Veterans Affairs Medical Center approved the protocols. Written informed consent was waived because invasive cardiac monitoring and TEE are routinely used in all patients undergoing cardiac surgery in our institution. Patients with relative or absolute contraindications for TEE, those undergoing repeat median sternotomy or emergency surgery, and those with atrial or ventricular tachyarrhythmias were excluded from participation.
1. Anesthesia
The current technique allowed us to reliably measure VFT during cardiac surgery under a variety of clinical conditions by obtaining each determinant from blood flow and dimensional recordings in standard TEE imaging planes. A pulse-wave Doppler sample volume was placed at the tips of the mitral leaflets in the mid-esophageal four-chamber view to obtain the trans-mitral blood flow velocity profile necessary to calculate atrial filling fraction (β; Figure 1
The current results illustrate that VFT can be reliably measured during cardiac surgery using the TEE techniques described here. Previous descriptions of VFT used transthoracic echocardiography in conscious subjects, but this approach cannot be utilized when the chest is open. We used intraoperative TEE to determine VFT in the anesthetized patients undergoing cardiac surgery during which changes in LV filling dynamics are often encountered as a result of ischemia-reperfusion injury or surgical interventions. Our findings.......
The authors have no competing financial interests or other conflicts of interest pursuant to this work.
This material is the result of work supported with resources and the use of the facilities at the Clement J. Zablocki Veterans Affairs Medical Center in Milwaukee, Wisconsin.
....Name | Company | Catalog Number | Comments |
Echocardiography Machine | Philips Ultrasound, Bothall, WA | iE33 | |
Transesophageal Echocardiography Probe | Philips Ultrasound, Bothall, WA | X7-2t | |
Statistical Software | AnalystSoft, Walnut, CA | StatPlus:mac Pro |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved