JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Isolation of Physiologically Active Thylakoids and Their Use in Energy-Dependent Protein Transport Assays

Published: September 28th, 2018

DOI:

10.3791/58393

1Department of Plant Biology, University of California - Davis

Chloroplasts are the organelles in green plants responsible for carrying out numerous essential metabolic pathways, most notably photosynthesis. Within the chloroplasts, the thylakoid membrane system houses all the photosynthetic pigments, reaction center complexes, and most of the electron carriers, and is responsible for light-dependent ATP synthesis. Over 90% of chloroplast proteins are encoded in the nucleus, translated in the cytosol, and subsequently imported into the chloroplast. Further protein transport into or across the thylakoid membrane utilizes one of four translocation pathways. Here, we describe a high-yield method for isolation of transport-competent thylakoids from peas (Pisum sativum), along with transport assays through the three energy-dependent cpTat, cpSec1, and cpSRP-mediated pathways. These methods enable experiments relating to thylakoid protein localization, transport energetics, and the mechanisms of protein translocation across biological membranes.

Tags

Keywords Thylakoids

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved