Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to screen extracellular protein microarrays for identification of novel receptor-ligand interactions in high throughput. We also describe a method to enhance detection of transient protein-protein interactions by using protein-microbead complexes.

Abstract

Secreted factors, membrane-tethered receptors, and their interacting partners are main regulators of cellular communication and initiation of signaling cascades during homeostasis and disease, and as such represent prime therapeutic targets. Despite their relevance, these interaction networks remain significantly underrepresented in current databases; therefore, most extracellular proteins have no documented binding partner. This discrepancy is primarily due to the challenges associated with the study of the extracellular proteins, including expression of functional proteins, and the weak, low affinity, protein interactions often established between cell surface receptors. The purpose of this method is to describe the printing of a library of extracellular proteins in a microarray format for screening of protein-protein interactions. To enable detection of weak interactions, a method based on multimerization of the query protein under study is described. Coupled to this microbead-based multimerization approach for increased multivalency, the protein microarray allows robust detection of transient protein-protein interactions in high throughput. This method offers a rapid and low sample consuming-approach for identification of new interactions applicable to any extracellular protein. Protein microarray printing and screening protocol are described. This technology will be useful for investigators seeking a robust method for discovery of protein interactions in the extracellular space.

Introduction

The method reviewed here describes the printing of a collection of extracellular proteins in a microarray format, followed by a method for screening of a target of interest against this library. We have identified protein multimerization as a crucial step for detection of interactions characterized by low binding affinities. To enhance detection of these interactions, we describe a protocol based on multimerization of the query protein of interest using microbeads.

Secreted and cell surface-expressed proteins (collectively termed extracellular proteins) along with their interacting partners are key regulators of cellular communication, sign....

Protocol

1. Generation of a Library of Extracellular Human Proteins

  1. Compile a list of cell surface receptors or secreted proteins of interest to build the protein microarray library. Specific protein families (for example, the immunoglobulin superfamily) or proteins selectively expressed in particular cell types can be selected for the study.
  2. For cell surface receptors, determine the extracellular domain (ECD) boundaries by identifying the signal peptide and transmembrane regions using software tools. Some o.......

Representative Results

A schematic of the workflow for the extracellular protein microarray technology is shown in Figure 1. Once the microarray slides containing the extracellular protein library are available, the screening of the protein of interest and data analysis can be completed within one day. Many physiologically relevant interactions between membrane-embedded receptors are characterized by very weak binding strengths (KD in the micromolar range). To improve de.......

Discussion

A significant number of orphan receptors remain in the human genome, and novel interacting partners continue to emerge for extracellular proteins with previously characterized ligands. Defining the receptor-ligand interactions in human and model organisms is essential to understand the mechanisms that dictate cellular communication during homeostasis, as well as dysregulation leading to disease, and therefore inform new or improved therapeutic options. Nevertheless, detection of extracellular protein interactions by wide.......

Acknowledgements

We thank Philamer Calses and Kobe Yuen for critically reading the manuscript. We are thankful to Randy Yen for excellent technical advice.

....

Materials

NameCompanyCatalog NumberComments
Ultra Pure MB Grade glycerolUSB Corporation56-81-5Protein storage
SeptoMark blocking buffer ZeptosensBB1, 90-40Blocking buffer microarray slides
Bovine serum albuminRoche03-117-957-001Slide control for mask fitting (optional)
Polypropylene multiwell platesGreiner Bio One82050-678Protein storage
Polypropylene multiwell platesArrayitMMP384Slide printing
NanoPrint LM60, or similar contact microarrayerArrayitNanoPrint LM60, or similar contact microarrayerSlide printing
Micro spotting pinsArrayitMicro spotting pinsSlide printing
ZeptoFOG blocking stationZeptosensZeptoFOG blocking station, 1210Block slides after printing
Skim milk powderThermo FisherLP0031Blocking solution
Epoxysilane-coated glass slideNextrion Slide E1064016Microarray slides
Glass holder and slide rack setWheaton900303Slide storage
Cy5 monoreactive dyeGE HealthcarePA23031Albumin labeling
Cy5 monoreactive dyeGE HealthcarePA25001Human IgG labeling
Pro-spin desalting columnPrinceton SeparationsCS-800Remove free dye
Adhesive aluminum foil sealAlumaSealF-384-100Seal stock plates
Polypropylene cryogenic vialsCorning430658Master vials for protein library storage
Protein A microbeadsMiltenyi120-000-396Query protein multimerization
Human IgGJackson Immunoresearch 009-000-003Irrelevant IgG for labeling
Protein ASigma P7837Microarray slide blocking
Hybridization station, a-Hyb or similarMiltenyiHybridization station, a-Hyb or similarAutomated microarray processing (optional)
GenePix 4000B scanner or similarMolecular DevicesGenePix 4000B scanner or similarSlide scanning
GenePix Pro or equivalent data extraction softwareMolecular DevicesGenePix Pro or equivalent data extraction softwareData processing
Signal P4.1DTU Bioinformatics, Technical University of Denmarkonline softwarePrediction tool to determine presence and location of signal peptide cleavage sites
TMHMM 2.0 serverDTU Bioinformatics, Technical University of Denmarkonline softwarePrediction of transmembrane helices in proteins
PhobiusStockholm Bioinformatics Centeronline softwareA combined transmembrane topology and signal peptide predictor
TOPCONSStockholm Universityonline softwarePrediction of membrane topology and signal peptides

References

  1. Overington, J. P., Al-Lazikani, B., Hopkins, A. L. How many drug targets are there?. Nature Reviews Drug Discovery. 5 (12), 993-996 (2006).
  2. Wright, G. J., Martin, S., Bushell, K. M., Sollner, C. High-throughput identification of transient ex....

Explore More Articles

Extracellular Protein MicroarrayHigh Throughput DetectionLow Affinity Receptor ligand InteractionsProtein protein InteractionsMicro ArrayerEpoxy Silane SlidesCy3 Labeled BSABlocking SolutionMultivalent ApproachFc tagged Extracellular DomainsProtein A Coated MicrobeadsCy5 IgG Labeling

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved