A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Here we present a protocol to individually track animals over a long period of time. It uses computer vision methods to identify a set of manually constructed tags by using a group of lobsters as case study, simultaneously providing information on how to house, manipulate, and mark the lobsters.
We present a protocol related to a video-tracking technique based on the background subtraction and image thresholding that makes it possible to individually track cohoused animals. We tested the tracking routine with four cohoused Norway lobsters (Nephrops norvegicus) under light-darkness conditions for 5 days. The lobsters had been individually tagged. The experimental setup and the tracking techniques used are entirely based on the open source software. The comparison of the tracking output with a manual detection indicates that the lobsters were correctly detected 69% of the times. Among the correctly detected lobsters, their individual tags were correctly identified 89.5% of the times. Considering the frame rate used in the protocol and the movement rate of lobsters, the performance of the video tracking has a good quality, and the representative results support the validity of the protocol in producing valuable data for research needs (individual space occupancy or locomotor activity patterns). The protocol presented here can be easily customized and is, hence, transferable to other species where the individual tracking of specimens in a group can be valuable for answering research questions.
In the last few years, automated image-based tracking has provided highly accurate datasets which can be used to explore basic questions in ecology and behavior disciplines1. These datasets can be used for the quantitative analysis of animal behavior2,3. However, each image methodology used for tracking animals and behavior evaluation has its strengths and limitations. In image-based tracking protocols that use spatial information from previous frames in a movie to track animals4,5,6, errors ca....
The species used in this study is not an endangered or protected species. Sampling and laboratory experiments followed the Spanish legislation and internal institutional (ICM-CSIC) regulations regarding animal welfare. Animal sampling was conducted with the permission of the local authority (Regional Government of Catalonia).
1. Animal Maintenance and Sampling
NOTE: The following protocol is based on the assumption that researchers can sample N. n.......
We manually constructed a subset of the experimental data to validate the automated video analysis. A sample size of 1,308 frames with a confidence level of 99% (which is a measure of security that shows whether the sample accurately reflects the population, within its margin of error) and a margin of error of 4% (which is a percentage that describes how close the response the sample gave is to the real value in the population) was randomly selected, and a manual annotation of the correct.......
The performance and representative results obtained with the video-tracking protocol confirmed its validity for applied research in the field of animal behavior, with a specific focus on social modulation and circadian rhythms of cohoused animals. The efficiency of animal detection (69%) and the accuracy of tag discrimination (89.5%) coupled with the behavioral characteristics (i.e., movement rate) of the target species used here suggest that this protocol is a perfect solution for long-term experimental trials (e.g., da.......
The authors are grateful to the Dr. Joan B. Company that funded the publication of this work. Also, the authors are grateful to the technicians of the experimental aquarium zone at the Institute of Marine Sciences in Barcelona (ICM-CSIC) for their help during the experimental work.
This work was supported by the RITFIM project (CTM2010-16274; principal investigator: J. Aguzzi) founded by the Spanish Ministry of Science and Innovation (MICINN), and the TIN2015-66951-C2-2-R grant from the Spanish Ministry of Economy and Competitiveness.
....Name | Company | Catalog Number | Comments |
Tripod 475 | Manfrotto | A0673528 | Discontinued |
Articulated Arm 143 | Manfrotto | D0057824 | Discontinued |
Camera USB 2.0 uEye LE | iDS | UI-1545LE-M | https://en.ids-imaging.com/store/products/cameras/usb-2-0-cameras/ueye-le.html |
Fish Eye Len C-mount f=6mm/F1.4 | Infaimon | Standard Optical | https://www.infaimon.com/es/estandar-6mm |
Glass Fiber Tank 1500x700x300 mm | |||
Black Felt Fabric | |||
Wood Structure Tank | 5 Wood Strips 50x50x250 mm | ||
Wood Structure Felt Fabric | 10 Wood Strips 25x25x250 mm | ||
Stainless Steel Screws | As many as necessary for fix wood strips structures | ||
PC | 2-cores CPU, 4GB RAM, 1 GB Graphics, 500 GB HD | ||
External Storage HDD | 2 TB capacity desirable | ||
iSPY Sotfware for Windows PC | iSPY | https://www.ispyconnect.com/download.aspx | |
Zoneminder Software Linux PC | Zoneminder | https://zoneminder.com/ | |
OpenCV 2.4.13.6 Library | OpenCV | https://opencv.org/ | |
Python 2.4 | Python | https://www.python.org/ | |
Camping Icebox | |||
Plastic Tray | |||
Cyanocrylate Gel | To glue tag’s | ||
1 black PVC plastic sheet (1 mm thickness) | Tag's construction | ||
1 white PVC plastic sheet (1 mm thickness) | Tag's construction | ||
4 Tag’s Ø 40 mm | Maked with black & white PVC plastic sheet | ||
3 m Blue Strid Led Ligts (480 nm) | Waterproof as desirable | ||
3 m IR Strid Led Ligts (850 nm) | Waterproof as desirable | ||
6m Methacrylate Pipes Ø 15 mm | Enclosed Strid Led | ||
4 PVC Elbow 45o Ø 63 mm | Burrow construction | ||
3 m Flexible PVC Pipe Ø 63 mm | Burrow construction | ||
4 PVC Screwcap Ø 63 mm | Burrow construction | ||
4 O-ring Ø 63 mm | Burrow construction | ||
4 Female PVC socket glue / thread Ø 63 mm | Burrow construction | ||
10 m DC 12V Electric Cable | Light Control Mechanism | ||
Ligt Power Supply DC 12V 300 w | Light Control Mechanism | ||
MOSFET, RFD14N05L, N-Canal, 14 A, 50 V, 3-Pin, IPAK (TO-251) | RS Components | 325-7580 | Light Control Mechanism |
Diode, 1N4004-E3/54, 1A, 400V, DO-204AL, 2-Pines | RS Components | 628-9029 | Light Control Mechanism |
Fuse Holder | RS Components | 336-7851 | Light Control Mechanism |
2 Way Power Terminal 3.81mm | RS Components | 220-4658 | Light Control Mechanism |
Capacitor 220 µF 200 V | RS Components | 440-6761 | Light Control Mechanism |
Resistance 2K2 7W | RS Components | 485-3038 | Light Control Mechanism |
Fuse 6.3x32mm 3A | RS Components | 413-210 | Light Control Mechanism |
Arduino Uno Atmel Atmega 328 MCU board | RS Components | 715-4081 | Light Control Mechanism |
Prototipe Board CEM3,3 orific.,RE310S2 | RS Components | 728-8737 | Light Control Mechanism |
DC/DC converter,12Vin,+/-5Vout 100mA 1W | RS Components | 689-5179 | Light Control Mechanism |
2 SERA T8 blue moonlight fluorescent bulb 36 watts | SERA | Discontinued / Light isolated facility |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved