Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present a protocol to individually track animals over a long period of time. It uses computer vision methods to identify a set of manually constructed tags by using a group of lobsters as case study, simultaneously providing information on how to house, manipulate, and mark the lobsters.

Abstract

We present a protocol related to a video-tracking technique based on the background subtraction and image thresholding that makes it possible to individually track cohoused animals. We tested the tracking routine with four cohoused Norway lobsters (Nephrops norvegicus) under light-darkness conditions for 5 days. The lobsters had been individually tagged. The experimental setup and the tracking techniques used are entirely based on the open source software. The comparison of the tracking output with a manual detection indicates that the lobsters were correctly detected 69% of the times. Among the correctly detected lobsters, their individual tags were correctly identified 89.5% of the times. Considering the frame rate used in the protocol and the movement rate of lobsters, the performance of the video tracking has a good quality, and the representative results support the validity of the protocol in producing valuable data for research needs (individual space occupancy or locomotor activity patterns). The protocol presented here can be easily customized and is, hence, transferable to other species where the individual tracking of specimens in a group can be valuable for answering research questions.

Introduction

In the last few years, automated image-based tracking has provided highly accurate datasets which can be used to explore basic questions in ecology and behavior disciplines1. These datasets can be used for the quantitative analysis of animal behavior2,3. However, each image methodology used for tracking animals and behavior evaluation has its strengths and limitations. In image-based tracking protocols that use spatial information from previous frames in a movie to track animals4,5,6, errors ca....

Protocol

The species used in this study is not an endangered or protected species. Sampling and laboratory experiments followed the Spanish legislation and internal institutional (ICM-CSIC) regulations regarding animal welfare. Animal sampling was conducted with the permission of the local authority (Regional Government of Catalonia).

1. Animal Maintenance and Sampling

NOTE: The following protocol is based on the assumption that researchers can sample N. n.......

Representative Results

We manually constructed a subset of the experimental data to validate the automated video analysis. A sample size of 1,308 frames with a confidence level of 99% (which is a measure of security that shows whether the sample accurately reflects the population, within its margin of error) and a margin of error of 4% (which is a percentage that describes how close the response the sample gave is to the real value in the population) was randomly selected, and a manual annotation of the correct.......

Discussion

The performance and representative results obtained with the video-tracking protocol confirmed its validity for applied research in the field of animal behavior, with a specific focus on social modulation and circadian rhythms of cohoused animals. The efficiency of animal detection (69%) and the accuracy of tag discrimination (89.5%) coupled with the behavioral characteristics (i.e., movement rate) of the target species used here suggest that this protocol is a perfect solution for long-term experimental trials (e.g., da.......

Acknowledgements

The authors are grateful to the Dr. Joan B. Company that funded the publication of this work. Also, the authors are grateful to the technicians of the experimental aquarium zone at the Institute of Marine Sciences in Barcelona (ICM-CSIC) for their help during the experimental work.

This work was supported by the RITFIM project (CTM2010-16274; principal investigator: J. Aguzzi) founded by the Spanish Ministry of Science and Innovation (MICINN), and the TIN2015-66951-C2-2-R grant from the Spanish Ministry of Economy and Competitiveness.

....

Materials

NameCompanyCatalog NumberComments
Tripod 475ManfrottoA0673528Discontinued
Articulated Arm 143ManfrottoD0057824Discontinued
Camera USB 2.0 uEye LEiDSUI-1545LE-Mhttps://en.ids-imaging.com/store/products/cameras/usb-2-0-cameras/ueye-le.html
Fish Eye Len C-mount f=6mm/F1.4InfaimonStandard Optical https://www.infaimon.com/es/estandar-6mm
Glass Fiber Tank 1500x700x300 mm
Black Felt Fabric
Wood Structure Tank5 Wood Strips 50x50x250 mm
Wood Structure Felt Fabric10 Wood Strips 25x25x250 mm
Stainless Steel ScrewsAs many as necessary for fix wood strips structures
PC2-cores CPU, 4GB RAM, 1 GB Graphics, 500 GB HD
External Storage HDD2 TB capacity desirable
iSPY Sotfware for Windows PCiSPYhttps://www.ispyconnect.com/download.aspx
Zoneminder Software Linux PCZoneminderhttps://zoneminder.com/
OpenCV 2.4.13.6 LibraryOpenCVhttps://opencv.org/
Python 2.4Pythonhttps://www.python.org/
Camping Icebox
Plastic Tray
Cyanocrylate GelTo glue tag’s 
1 black PVC plastic sheet (1 mm thickness)Tag's construction
1 white PVC plastic sheet (1 mm thickness)Tag's construction
4 Tag’s Ø 40 mmMaked with black & white PVC plastic sheet
3 m Blue Strid Led Ligts (480 nm)Waterproof as desirable
3 m IR Strid Led Ligts (850 nm)Waterproof as desirable
6m  Methacrylate Pipes Ø 15 mmEnclosed Strid Led
4 PVC Elbow  45o Ø 63 mmBurrow construction
3 m Flexible PVC Pipe Ø 63 mmBurrow construction
4 PVC Screwcap Ø 63 mmBurrow construction
4 O-ring Ø 63 mmBurrow construction
4 Female PVC socket glue / thread Ø 63 mmBurrow construction
10 m DC 12V Electric CableLight Control Mechanism
Ligt Power Supply DC 12V 300 wLight Control Mechanism
MOSFET, RFD14N05L, N-Canal, 14 A, 50 V, 3-Pin, IPAK (TO-251)RS Components325-7580Light Control Mechanism
Diode, 1N4004-E3/54, 1A, 400V, DO-204AL, 2-PinesRS Components628-9029Light Control Mechanism
Fuse HolderRS Components336-7851Light Control Mechanism
2 Way Power Terminal 3.81mmRS Components220-4658Light Control Mechanism
Capacitor 220 µF 200 VRS Components440-6761Light Control Mechanism
Resistance 2K2 7WRS Components485-3038Light Control Mechanism
Fuse 6.3x32mm 3ARS Components413-210Light Control Mechanism
Arduino Uno Atmel Atmega 328 MCU boardRS Components715-4081Light Control Mechanism
Prototipe Board CEM3,3 orific.,RE310S2RS Components728-8737Light Control Mechanism
DC/DC converter,12Vin,+/-5Vout 100mA 1WRS Components689-5179Light Control Mechanism
2 SERA T8 blue moonlight fluorescent bulb 36 wattsSERADiscontinued / Light isolated facility

References

  1. Dell, A. I., et al. Automated image-based tracking and its application in ecology. Trends in Ecology & Evolution. 29 (7), 417-428 (2014).
  2. Berman, G. J., Choi, D. M., Bialek, W., Shaevitz, J. W. Mapping the stereotyped behaviour ....

Explore More Articles

Video TrackingCohoused Aquatic AnimalsNorway LobsterNephrops NorvegicusLocomotor ActivityAutomationAnimal IDTag DetectionVideo AnalysisChronobiologyEcologyViral ResearchNeuroscienceHardware DesignOpen Source ProgrammingPythonTag ConstructionInfrared LightingBlue LightPhoto PeriodChilled SeawaterVideo RecordingBehavioral Scoring

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved