A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol provides a Fiji-based, user-friendly methodology along with straightforward instructions explaining how to reliably analyze actomyosin behavior in individual cells and curved epithelial tissues. No programming skills are required to follow the tutorial; all steps are performed in a semi-interactive manner using the graphical user interface of Fiji and associated plugins.
Drosophila immature eggs are called egg chambers, and their structure resembles primitive organs that undergo morphological changes from a round to an ellipsoid shape during development. This developmental process is called oogenesis and is crucial to generating functional mature eggs to secure the next fly generation. For these reasons, egg chambers have served as an ideal and relevant model to understand animal organ development.
Several in vitro culturing protocols have been developed, but there are several disadvantages to these protocols. One involves the application of various covers that exert an artificial pressure on the imaged egg chambers in order to immobilize them and to increase the imaged acquisition plane of the circumferential surface of the analyzed egg chambers. Such an approach may negatively influence the behavior of the thin actomyosin machinery that generates the power to rotate egg chambers around their longer axis.
Thus, to overcome this limitation, we culture Drosophila egg chambers freely in the media in order to reliably analyze actomyosin machinery along the circumference of egg chambers. In the first part of the protocol, we provide a manual detailing how to analyze the actomyosin machinery in a limited acquisition plane at the local cellular scale (up to 15 cells). In the second part of the protocol, we provide users with a new Fiji-based plugin that allows the simple extraction of a defined thin layer of the egg chambers’ circumferential surface. The following protocol then describes how to analyze actomyosin signals at the tissue scale (>50 cells). Finally, we pinpoint the limitations of these approaches at both the local cellular and tissue scales and discuss its potential future development and possible applications.
The continual development of novel imaging and software technologies with applications in the life sciences has provided an enormous impact on understanding the basic principles of life. One of the main challenges is the reliable visualization of developmental processes in combination with their live imaging in various tissues. Tissues are parts of organs and bodies and, as such, the majority are not easily accessible for imaging. Therefore, protocols that allow their dissection and in vitro culturing have been developed in order to visualize biological events that sufficiently reflect the in vivo situation within a living body.
Over the pa....
NOTE: The following protocol provides instructions on how to analyze actomyosin at the local cellular and the tissue scale in Drosophila egg chambers. The local-scale approach allows users to analyze detailed actomyosin behavior in up to 15 cells per egg chamber and requires the acquisition of TLMs for a short period of time (5–10 min) by using high-speed imaging and an inverted confocal microscope. In contrast, the tissue scale provides users with actomyosin information in 50–100 ce.......
This protocol enables scientists to investigate the behavior of actomyosin networks in epithelial tissues. This is only possible when a detailed analysis of actomyosin behavior at the local cellular scale (a few cells) is combined with a similar analysis at the tissue scale (many cells). However, epithelial tissues are often curved and the extraction of a thin layer of these tissues was previously not easily possible, as shown in Drosophila egg chambers (Figu.......
Critical steps and troubleshooting for the dissection and culturing of egg chambers
If too many flies are placed into a small vial, the fly food can turn muddy after 2–3 days due to extensive amounts of feeding larvae and adult flies getting trapped in the fly food. In such a case, flip the rest of these flies into a new vial with fresh food and downsize their number. In particular, exclude females that were stuck in the food.
The Schneider mi.......
The authors are very thankful to Miriam Osterfield for sharing her advice on the in vitro life imaging of egg chambers using an approach adopted from the Celeste Berg laboratory4. We also thank to Sebastian Tosi for the Fiji script that enables cell segmentation.
....Name | Company | Catalog Number | Comments |
Schneider Medium | Gibco | 21720-024 | [+]-Glutamine |
Penicillin/Streptomycin | Gibco | 15140-122 | [+] 10.000 Units/ml Penicillin [+] 10.000 µg/ml Streptomycin |
Fetal Bovine Serum | Sigma | F135 | Heat inactivated |
Insulin Solution Human | Sigma | I9278 | |
50 ml Falcon tubes | Eppendorf | sterile | |
Millex-GV filter | Millipore | SLGV033NS | 33 mm |
Glass Bottom Microwell Dishes | MatTek Corporation | P35G-1.5-14-C | 35 mm Petri dish, 14 mm Microwell, No. 1.5 cover glass |
Forceps | A. Dumont & Fils | #55 | |
CellMask Deep Red (cell membrane dye) | Invitrogen | C10046 | |
FM4-64 (cell membrane dye) | ThermoFisher/Invitrogen | T13320 | |
Depression dissection slide | Fisher Scientific | 12-560B | |
Microscopic equipment | |||
Steromicroscope | e.g. Zeiss | Stemi SV 6 | |
Inverted confocal microscope | e.g. Zeiss/Olympus | ||
Spinning disc microscope | e.g. Zeiss/Andor | ||
Microscopic glass/cover glass | e.g. Thermo Scientific/Menzel Glas | ||
Cactus tool | |||
Wironit needle holder | Hammacher | 9160020 | |
Cactus spine | Echinocactus grusonii/barrel cactus | ||
Drosophila stocks used in the manuscript | |||
AX3/AX3; sqh-MRLC::GFP/sqh-MRLC::GFP | For detail see Rauzi et al.: Planar polarized actomyosin contractile flows control epithelial junction remodeling. Nature 2010, Vol. 468, pg. 1110-1115. | ||
AX3/AX3; sqh-MRLC::GFP/sqh-MRLC::GFP; fat258D/fat103C | For detail see Viktorinova et al.: Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations. PLoS Genetics 2017, Vol. 13, Issue 11, pg. e1007107. |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved