A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol that involves genetically coupled spectrally distinct photoactivatable and fluorescent proteins. These fluorescent protein chimeras permit quantification of the PA-FP fraction that is photoactivated to be fluorescent, i.e., the photoactivation efficiency. The protocol reveals that different modes of photoactivation yield different photoactivation efficiencies.
Photoactivatable and -convertible fluorescent proteins (PA-FPs) have been used in fluorescence live-cell microscopy for analyzing the dynamics of cells and protein ensembles. Thus far, no method has been available to quantify in bulk and in live cells how many of the PA-FPs expressed are photoactivated to fluoresce.
Here, we present a protocol involving internal rulers, i.e., genetically coupled spectrally distinct (photoactivatable) fluorescent proteins, to ratiometrically quantify the fraction of all PA-FPs expressed in a cell that are switched on to be fluorescent. Using this protocol, we show that different modes of photoactivation yielded different photoactivation efficiencies. Short high-power photoactivation with a confocal laser scanning microscope (CLSM) resulted in up to four times lower photoactivation efficiency than hundreds of low-level exposures applied by CLSM or a short pulse applied by widefield illumination. While the protocol has been exemplified here for (PA-)GFP and (PA-)Cherry, it can in principle be applied to any spectrally distinct photoactivatable or photoconvertible fluorescent protein pair and any experimental set-up.
In 2002, the first broadly applicable photoactivatable (PA-GFP1) and photoconvertible (Kaede2) fluorescent proteins were described. These optical highlighter fluorescent proteins change their spectral properties upon irradiation with UV-light, i.e., they become bright (photoactivatable fluorescent proteins, i.e., PA-FPs), or change their color (photoconvertible FPs). To date, several reversible and irreversible photoactivatable and photoconvertible fluorescent proteins have been developed3,4. In ensemble or bulk studies, optical highlighters hav....
1. Plasmid Construction
The protocol presented here shows the ratiometric quantification of the fraction of fluorescent proteins that are photoactivated to be fluorescent (Figure 1). This fraction differs depending upon the mode of photoactivation.
A typical result using short time high-power photoactivation with a confocal laser scanning microscope (CLSM) is shown in Figure 2c. After titratin.......
So far, no method existed to determine in bulk the fraction of PA-FPs expressed in live cells that is photoactivated to be fluorescent. The presented protocol can be used for any spectrally distinct fluorescent protein pair. While exemplified here for the irreversible PA-FPs PA-GFP and PA-Cherry, this approach is in principle applicable to photoconvertible proteins as well. The spectrally distinct fluorescent protein, however, must be selected carefully to minimize spectral overlap given that photoconvertible fluorescent.......
We would like to thank the Dorigo laboratory and the Neuroscience Imaging Service at Stanford University School of Medicine for providing equipment and space for this project.
....Name | Company | Catalog Number | Comments |
pEGFP-N1 mammalian cell expression vector | Clontech | ||
DMEM w/o phenol red | Thermo Fisher Scientific | 11054020 | |
Trypsin w/o phenol red | Thermo Fisher Scientific | 15400054 | |
L-Glutamine (200 mM) | Thermo Fisher Scientific | 25030081 | |
HEPES | Thermo Fisher Scientific | 15630080 | |
LabTek 8-well chambers #1.0 | Thermo Fisher Scientific | 12565470 | |
Fugene 6 | Promega | E2691 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved