Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol that involves genetically coupled spectrally distinct photoactivatable and fluorescent proteins. These fluorescent protein chimeras permit quantification of the PA-FP fraction that is photoactivated to be fluorescent, i.e., the photoactivation efficiency. The protocol reveals that different modes of photoactivation yield different photoactivation efficiencies.

Abstract

Photoactivatable and -convertible fluorescent proteins (PA-FPs) have been used in fluorescence live-cell microscopy for analyzing the dynamics of cells and protein ensembles. Thus far, no method has been available to quantify in bulk and in live cells how many of the PA-FPs expressed are photoactivated to fluoresce.

Here, we present a protocol involving internal rulers, i.e., genetically coupled spectrally distinct (photoactivatable) fluorescent proteins, to ratiometrically quantify the fraction of all PA-FPs expressed in a cell that are switched on to be fluorescent. Using this protocol, we show that different modes of photoactivation yielded different photoactivation efficiencies. Short high-power photoactivation with a confocal laser scanning microscope (CLSM) resulted in up to four times lower photoactivation efficiency than hundreds of low-level exposures applied by CLSM or a short pulse applied by widefield illumination. While the protocol has been exemplified here for (PA-)GFP and (PA-)Cherry, it can in principle be applied to any spectrally distinct photoactivatable or photoconvertible fluorescent protein pair and any experimental set-up.

Introduction

In 2002, the first broadly applicable photoactivatable (PA-GFP1) and photoconvertible (Kaede2) fluorescent proteins were described. These optical highlighter fluorescent proteins change their spectral properties upon irradiation with UV-light, i.e., they become bright (photoactivatable fluorescent proteins, i.e., PA-FPs), or change their color (photoconvertible FPs). To date, several reversible and irreversible photoactivatable and photoconvertible fluorescent proteins have been developed3,4. In ensemble or bulk studies, optical highlighters hav....

Protocol

1. Plasmid Construction

  1. Generate two-color fusion probes. Use a mammalian cell expression vector (see Table of Materials) in which mCherry112 and PA-mCherry113 have been inserted with the restriction sites AgeI and BsrGI.
  2. Order custom oligo-nucleotides to amplify the monomeric variants of eGFP and PA-eGFP containing the A206K mutation, i.e., mEGFP and PA-mEGFP14 without a stop codon as.......

Representative Results

The protocol presented here shows the ratiometric quantification of the fraction of fluorescent proteins that are photoactivated to be fluorescent (Figure 1). This fraction differs depending upon the mode of photoactivation.

A typical result using short time high-power photoactivation with a confocal laser scanning microscope (CLSM) is shown in Figure 2c. After titratin.......

Discussion

So far, no method existed to determine in bulk the fraction of PA-FPs expressed in live cells that is photoactivated to be fluorescent. The presented protocol can be used for any spectrally distinct fluorescent protein pair. While exemplified here for the irreversible PA-FPs PA-GFP and PA-Cherry, this approach is in principle applicable to photoconvertible proteins as well. The spectrally distinct fluorescent protein, however, must be selected carefully to minimize spectral overlap given that photoconvertible fluorescent.......

Acknowledgements

We would like to thank the Dorigo laboratory and the Neuroscience Imaging Service at Stanford University School of Medicine for providing equipment and space for this project.

....

Materials

NameCompanyCatalog NumberComments
pEGFP-N1 mammalian cell expression vectorClontech
DMEM w/o phenol redThermo Fisher Scientific11054020
Trypsin w/o phenol redThermo Fisher Scientific15400054
L-Glutamine (200 mM)Thermo Fisher Scientific25030081
HEPESThermo Fisher Scientific15630080
LabTek 8-well chambers #1.0Thermo Fisher Scientific12565470
Fugene 6PromegaE2691

References

  1. Patterson, G. H., Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 297 (5588), 1873-1877 (2002).
  2. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., Miyawaki, A.

Explore More Articles

Photo activatable Fluorescent ProteinsPA GFPPA CherryFluorescence MicroscopyProtein ExpressionQuantificationLive CellsInternal RulersGenetically Coupled Fluorescent Proteins

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved