JoVE Logo
Faculty Resource Center

Sign In

Abstract

Engineering

Generating Lap Joints Via Friction Stir Spot Welding on DP780 Steel

Published: August 13th, 2019

DOI:

10.3791/58633

1Department of Health and Beauty, Shu Zen College of Medicine and Management, 2Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology

Friction stir spot welding (FSSW), a derivative of friction stir welding (FSW), is a solid-state welding technique that was developed in 1991. An industry application was found in the automotive industry in 2003 for the aluminum alloy that was used in the rear doors of automobiles. Friction stir spot welding is mostly used in Al alloys to create lap joints. The benefits of friction stir spot welding include a nearly 80% melting temperature that lowers the thermal deformation welds without splashing compared to resistance spot welding. Friction stir spot welding includes 3 steps: plunging, stirring, and retraction. In the present study, other materials including high strength steel are also used in the friction stir welding method to create joints. DP780, whose traditional welding process involves the use of resistance spot welding, is one of several high strength steel materials used in the automotive industry. In this paper, DP780 was used for friction stir spot welding, and its microstructure and microhardness were measured. The microstructure data showed that there was a fusion zone with fine grain and a heat effect zone with island martensite. The microhardness results indicated that the center zone exhibited a greater degree of hardness compared with the base metal. All data indicated that the friction stir spot welding used in dual phase steel 780 can create a good lap joint. In the future, friction stir spot welding can be used in high-strength steel welding applied in industrial manufacturing processes.

Tags

Keywords Friction Stir Spot Welding

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved