A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol to address the potential use of platelets as a highly sensitive nitric oxide sensor in blood. It describes initial platelet preparation and the use of nitrite and deoxygenated red blood cells as nitric oxide generators.
Platelets are the blood components responsible for proper blood clotting. Their function is highly regulated by various pathways. One of the most potent vasoactive agents, nitric oxide (NO), can also act as a powerful inhibitor of platelet aggregation. Direct NO detection in blood is very challenging due to its high reactivity with cell-free hemoglobin that limits NO half-life to the millisecond range. Currently, NO changes after interventions are only estimated based on measured changes of nitrite and nitrate (members of the nitrate-nitrite-NO metabolic pathway). However precise, these measurements are rather difficult to interpret vis a vis actual NO changes, due to the naturally high baseline nitrite and nitrate levels that are several orders of magnitude higher than expected changes of NO itself. Therefore, the development of direct and simple methods that would allow one to detect NO directly is long overdue. This protocol addresses a potential use of platelets as a highly sensitive NO sensor in blood. It describes initial platelet rich plasma (PRP) and washed platelet preparations and the use of nitrite and deoxygenated red blood cells as NO generators. Phosphorylation of VASP at serine 239 (P-VASPSer239) is used to detect the presence of NO. The fact that VASP protein is highly expressed in platelets and that it is rapidly phosphorylated when NO is present leads to a unique opportunity to use this pathway to directly detect NO presence in blood.
Platelets are small disc-shaped cell fragments derived from megakaryocytes that are crucial for blood clotting. The clotting cascade is initiated by various bioactive molecules (such as collagen or ADP), released after the injury of vascular wall. The blood clotting process can be modified, among various effectors by nitric oxide (NO). NO, naturally produced by mammalian cells, is one of the most versatile physiological signals. It acts as a potent vasodilator, neurotransmitter and immune modulator, to name a few of its many functions. In the bloodstream, NO also helps to regulate the extent of blood clotting by inhibiting platelet aggregation. One of the most likely ....
NOTE: Blood samples were obtained from NIH blood bank (IRB approved protocol: 99-CC-0168).
1. Blood Sample Preparation
NOTE: To avoid platelet activation, draw blood slowly and mix gently with citrate by inverting the tube several times.
Venous blood samples have pO2 values between 50-80 mmHg. Deoxygenation by helium rapidly decreases pO2 to 25 mmHg within 10 min. Increased deoxygenation time slightly further decreases pO2. However, increased time of deoxygenation also leads to significantly increased levels of cell-free hemoglobin (determined by CO-Oximeter, visually seen on Figure 2 as increasingly red coloration of plasma) (Figu.......
Since platelets are easily activated, gentle handling of platelet-containing samples is required. Fast pipetting and vigorous shaking should be avoided. Platelet inhibitors such as prostacyclin (PGI2) can be used to prevent platelet activation; however, this may affect some signaling pathways inside the platelets. For the preparation of platelet pellets, we add ACD to the platelet suspensions and use low speed centrifugation.
Freshly prepared platelets in PRP have a limited life spa.......
This work was funded by NIH intramural grant to Dr Alan N. Schechter.
....Name | Company | Catalog Number | Comments |
Tri-sodium citrate | Supply by NIH blood bank | ||
Citric acid | Supply by NIH blood bank | ||
Glucose | Sigma | G7528-250G | |
NaCl; sodium chloride | Sigma | S-7653 1kg | |
NaH2PO4; sodium phosphate monobasic, monohydrate | Mallinckrodt Chemical | 7892-04 | |
KCl; potassium chloride | Mallinckrodt Chemical | 6858 | |
NaHCO3; sodium bicarbonate | Mallinckrodt Chemical | 7412-12 | |
HEPES; N-[2-Hydroxyethyl]piperazine-N'-[-ethanesulfonic acid] | Sigma | H3375-500g | |
MgCl2 (1 M); magnesium chloride | Quality Biology | 351-033-721 | |
CaCl2; calcium chloride | Sigma | C5080-500G | |
Nalgene Narrow-mouth HDPE Economy bottles | Nalgene | 2089-0001 | |
Red septum stopper NO.29 | Fisherbrand | FB57877 | |
NaNO2-; sodium nitrite | Sigma | S2252-500G | |
TRIZMA Base; Tris[hydroxymethyl]aminomethane | Sigma | T8524-250G | |
NP-40; 4-Nonylphenyl-polyethylene glycol | Sigma | 74385-1L | |
Protease inhibitor cocktail set III | Calbiochem | 539134 | |
Phospho-VASP (Ser239) antibody | Cell signaling technology | 3114 | |
VASP antibody | Cell signaling technology | 3112 | |
GAPDH (14C10) Rabbit mAb | Cell signaling technology | 2118 | |
2-mercaptoethanol | Sigma | M-6250-10ml | |
Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) | Jackson Immuno Research Laboratories | 111-035-003 | |
Clarity Western ECL Substrate | BIO-RAD | 1705060-200ml | |
CO-oximeter (ABL 90 flex) | Radiometer |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved