A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes a detailed workflow for the generation and ex vivo characterization of oncolytic viruses for expression of immunomodulators, using measles viruses encoding bispecific T cell engagers as an example. Application and adaptation to other vector platforms and transgenes will accelerate the development of novel immunovirotherapeutics for clinical translation.
Successful cancer immunotherapy has the potential to achieve long-term tumor control. Despite recent clinical successes, there remains an urgent need for safe and effective therapies tailored to individual tumor immune profiles. Oncolytic viruses enable the induction of anti-tumor immune responses as well as tumor-restricted gene expression. This protocol describes the generation and ex vivo analysis of immunomodulatory oncolytic vectors. Focusing on measles vaccine viruses encoding bispecific T cell engagers as an example, the general methodology can be adapted to other virus species and transgenes. The presented workflow includes the design, cloning, rescue, and propagation of recombinant viruses. Assays to analyze replication kinetics and lytic activity of the vector as well as functionality of the isolated immunomodulator ex vivo are included, thus facilitating the generation of novel agents for further development in preclinical models and ultimately clinical translation.
Oncolytic viruses (OVs) are being developed as anti-cancer therapeutics that specifically replicate within and kill tumor cells while leaving healthy tissues intact. It has now become common understanding that oncolytic virotherapy (OVT), in most cases, does not rely solely on complete tumor lysis by efficient replication and spreading of the virus, but requires additional mechanisms of action for treatment success, including vascular and stromal targeting and, importantly, immune stimulation1,2,3,4. While many early OV studies used unm....
NOTE: [O], [P], and [M] indicate subsections applicable to: OVs in general, (most) paramyxoviruses, or MV only, respectively. [B] indicates sections specific for BTE transgenes.
1 Cloning of Immunomodulator-encoding Transgenes into Measles Virus Vectors
Figure 1 illustrates the mechanism of action of oncolytic measles viruses encoding bispecific T cell engagers. A flowchart depicting the workflow of this protocol is presented in Figure 2. Figure 3 shows an example of a modified oncolytic measles virus genome. This provides a visual representation of the specific changes applied to the measles virus anti-genome and particular fe.......
Oncolytic immunotherapy (i.e., OVT in combination with immunomodulation) holds great promise for cancer treatment, demanding further development and optimization of oncolytic viruses encoding immunomodulatory proteins. This protocol describes methods to generate and validate such vectors for subsequent testing in relevant preclinical models and potential future clinical translation into novel anti-cancer therapeutics.
Numerous different oncolytic virus platforms with distinct advantag.......
These methods were established in the Virotherapy Group led by Prof. Dr. Dr. Guy Ungerechts at the National Center for Tumor Diseases in Heidelberg. We are indebted to him and all members of the laboratory team, especially Dr. Tobias Speck, Dr. Rūta Veinalde, Judith Förster, Birgit Hoyler, and Jessica Albert. This work was supported by the Else Kröner-Fresenius-Stiftung (Grant 2015_A78 to C.E. Engeland) and the German National Science Foundation (DFG, grant EN 1119/2-1 to C.E. Engeland). J.P.W. Heidbuechel receives a stipend by the Helmholtz International Graduate School for Cancer Research.
....Name | Company | Catalog Number | Comments |
Rapid DNA Dephos & Ligation Kit | Roche Life Science, Mannheim, Germany | 4898117001 | |
CloneJET PCR Cloning Kit | Thermo Fisher Scientific, St. Leon-Rot | K1231 | |
Agarose | Sigma-Aldrich, Taufkirchen, Germany | A9539-500G | |
QIAquick Gel Extraction Kit | QIAGEN, Hilden, Germany | 28704 | |
NEB 10-beta Competent E. coli | New England Biolabs (NEB), Frankfurt/Main, Germany | C3019I | |
LB medium after Lennox | Carl Roth, Karlsruhe, Germany | X964.1 | |
Ampicillin | Carl Roth, Karlsruhe, Germany | HP62.1 | |
QIAquick Miniprep Kit | QIAGEN, Hilden, Germany | 27104 | |
Restriction enzyme HindIII-HF | New England Biolabs (NEB), Frankfurt/Main, Germany | R3104S | |
Dulbecco's Modified Eagle's Medium (DMEM) | Invitrogen, Darmstadt, Germany | 31966-021 | |
Fetal bovine serum (FBS) | Biosera, Boussens, France | FB-1280/500 | |
FugeneHD | Promega, Mannheim, Germany | E2311 | may be replaced by transfection reagent of choice |
Kanamycin | Sigma-Aldrich, Taufkirchen, Germany | K0129 | |
Vero cells | ATCC, Manassas, VA, USA | CCL81 | |
B16-CD46/ B16-CD20-CD46 | J. Heidbuechel, DKFZ Heidelberg | available upon request | |
Granta-519 | DSMZ, Braunschweig, Germany | ACC 342 | |
Opti-MEM (serum-free medium) | Gibco Life Technologies, Darmstadt, Germany | 31985070 | |
Colorimetric Cell Viability Kit III (XTT) | PromoKine, Heidelberg, Germany | PK-CA20-300-1000 | includes XTT reagent |
Dulbecco's Phosphate-Buffered Saline (PBS) | Gibco Life Technologies, Darmstadt, Germany | 14190-094 | |
QIAquick Ni-NTA Spin Columns | QIAGEN, Hilden, Germany | 31014 | |
Sodium chloride | Carl Roth, Karlsruhe, Germany | 3957.3 | |
Imidazole | Carl Roth, Karlsruhe, Germany | I5513-25G | |
Amicon Ultra-15, PLGC Ultracel-PL Membran, 10 kDa | Merck, Darmstadt, Germany | UFC901024 | |
BCA Protein Assay Kit | Merck Milipore | 71285-3 | |
IgG from human serum | Sigma-Aldrich, Taufkirchen, Germany | I4506 | |
Anti-HA-PE | Miltenyi Biotech, Bergisch Gladbach, Germany | 130-092-257 | RRID: AB_871939 |
Mouse IgG1, kappa Isotype Control, Phycoerythrin Conjugated, Clone MOPC-21 antibody | BD Biosciences, Heidelberg, Germany | 555749 | RRID: AB_396091 |
Anti-HA-biotin antibody, clone 3F10 | Sigma-Aldrich, Taufkirchen, Germany | 12158167001 | RRID: AB_390915 |
Anti-Biotin MicroBeads | Miltenyi Biotech, Bergisch Gladbach, Germany | 130-090-485 | |
MS Columns | Miltenyi Biotech, Bergisch Gladbach, Germany | 130-042-201 | |
MiniMACS Separator | Miltenyi Biotech, Bergisch Gladbach, Germany | 130-042-102 | |
MACS MultiStand | Miltenyi Biotech, Bergisch Gladbach, Germany | 130-042-303 | |
RIPA buffer | Rockland Immunochemicals, Gilbertsville, PA, USA | MB-030-0050 | |
CytoTox 96 Non-Radioactive Cytotoxicity Assay | Promega, Mannheim, Germany | G1780 | includes 10x lysis solution, substrate solution (substrate mix and assay buffer), and stop solution |
Cell lifter | Corning, Reynosa, Mexico | 3008 | |
10 cm dishes | Corning, Oneonta, NY, USA | 430167 | |
15 cm dishes | Greiner Bio-One, Frickenhausen, Germany | 639160 | |
96-well plates, U-bottom | TPP, Trasadingen, Switzerland | 92097 | |
96-well plates, flat bottom | Neolab, Heidelberg, Germany | 353072 | |
6-well plates | Neolab, Heidelberg, Germany | 353046 | |
12-well plates | Neolab, Heidelberg, Germany | 353043 | |
50 mL tubes | nerbe plus, Winsen/Luhe, Germany | 02-572-3001 | |
T175 cell culture flasks | Thermo Fisher Scientific, St. Leon-Rot | 159910 | |
0.22 µm filters | Merck, Darmstadt, Germany | SLGPM33RS |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved