Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Análisis de señal a ruido nivel de aminoácidos determina la prevalencia de la variación genética en una posición dada del aminoácido normalizada para la variación genética de fondo de una determinada población. Esto permite la identificación de la variante "puntos calientes" dentro de una secuencia de la proteína (señal) que se eleva por encima de la frecuencia de variantes raras en una población (ruido).
Los avances en el costo y la velocidad de secuenciación genética de próxima generación han generado una explosión de exoma toda clínica y pruebas de todo el genoma. Mientras que esto ha llevado a mayor identificación de las mutaciones patógenas probables asociados a síndromes genéticos, ha también aumentado espectacularmente el número de fortuito encontrado variantes genéticas de la significación desconocida (VUS). Determinar la significación clínica de estas variantes es un gran desafío para los científicos y médicos. Un enfoque para ayudar a determinar la probabilidad de patogenicidad es análisis de señal a ruido en el nivel de secuencia de la proteína. Este protocolo describe un método para el análisis de señal a ruido nivel de aminoácidos que aprovecha la frecuencia variante en cada posición del aminoácido de la proteína con la topología de la proteína conocida para identificar las áreas de la secuencia principal con elevada probabilidad de variación patológica (en relación con la variación de población "fondo"). Este método puede identificar la ubicación de residuos del aminoácido 'hotspots' de alta señal patológica, que se puede utilizar para refinar el peso diagnóstico de VUSs como los identificados por pruebas genéticas de próxima generación.
La mejora rápida en plataformas de secuenciación genética ha revolucionado la accesibilidad y el papel de la genética en medicina. Una vez confinado a un solo gen, o un puñado de genes, la reducción de costos y aumento en la velocidad de próxima generación de secuenciación genética ha llevado la secuencia sistemática de la totalidad del genoma de secuencia de codificación (secuenciación del exoma completo, WES) y la totalidad del genoma ( secuenciación del genoma entero, WGS) en el ajuste clínico. WES y WGS han utilizado con frecuencia en el ajuste de los recién nacidos críticamente enfermos y niños con preocupación por síndrome genético que es una probada herramienta....
1. identificar los genes y empalme específica de isoforma de interés
Nota: Aquí, se demuestra el uso de Ensembl15 para identificar la secuencia de consenso para el gen de interés que se asocia con la patogenia de la enfermedad de interés (es decir, KCNQ1 mutaciones se asocian a LQTS). Alternativas a Ensembl incluyen RefSeq vía el Centro Nacional de información biotecnológica (NCBI)16 y la Universidad de California, Santa Cruz (UCSC) genoma humano explorador17 (véase Tabla de materiales).
Un resultado representativo para señal de nivel de aminoácidos análisis de ruido de KCNQ1 se representa en la figura 6. En este ejemplo, variantes raras identificadas en la cohorte de GnomAD (cohorte de control), identificado por cierto WES variantes (experimental cohorte #1) y variantes de SQTL asociado caso consideran probable asociada a la enfermedad (experimental cohorte #2) se describe. Además, el análisis de señal a ruido que comparan la frecuenci.......
Pruebas genéticas de alto rendimiento ha avanzado considerablemente en su aplicación y la disponibilidad de la última década. Sin embargo, en muchas enfermedades con bases genéticas bien establecidas, como las miocardiopatías, la prueba ampliada ha podido mejorar rendimiento diagnóstico21. Además, existe considerable incertidumbre con respecto a la utilidad de diagnóstico de muchas variantes identificadas. Esto es parcialmente debido a un creciente número de variantes raras por cierto id.......
Los autores no tienen nada que revelar.
APL es apoyado por el nacional institutos de salud K08-HL136839.
....Name | Company | Catalog Number | Comments |
1000 Genome Project | N/A | www.internationalgenome.org | |
ClinVar | N/A | www.ncbi.nlm.nih.gov/clinvar | |
Ensembl Genome Browser | N/A | uswest.ensembl.org/index.html | |
Excel | Microsoft | office.microsoft.com/excel/ | Used for all example formulas and functions |
Exome Aggregation Consortium | N/A | www.exac.broadinstitute.org | |
Genome Aggregation Database | N/A | www.gnomad.broadinstitute.org | |
National Center for Biotechnology Information Domain and Structure Database | N/A | www.ncbi.nlm.nih.gov/guide/domains-structures/ | |
National Center for Biotechnology Information Gene Database | N/A | www.ncbi.nlm.nih.gov/gene/ | |
National Center for Biotechnology Information Protein Database | N/A | www.ncbi.nlm.nih.gov/protein/ | |
National Heart, Lung, and Blood Institute GO Exome Sequencing Project | N/A | www.evs.gs.washington.edu/EVS/ | |
SnapGene | GSL Biotech LCC | www.snapgene.com | |
University of California, Santa Cruz Human Genome Browser | N/A | www.genome.ucsc.edu |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados