Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present an effective method to investigate the antifibrotic activity of intravenously infused human mesenchymal stromal cells obtained from the whole umbilical cord following the induction of lung injury by an endotracheal injection of bleomycin in C57BL/6 mice. This protocol can be easily extended to the preclinical testing of other therapeutics.

Abstract

Pulmonary fibrosis is a hallmark of several human lung diseases with a different etiology. Since current therapies are rather limited, mouse models continue to be an essential tool for developing new antifibrotic strategies. Here we provide an effective method to investigate in vivo antifibrotic activity of human mesenchymal stromal cells obtained from whole umbilical cord (hUC-MSC) in attenuating bleomycin-induced lung injury. C57BL/6 mice receive a single endotracheal injection of bleomycin (1.5 U/kg body weight) followed by a double infusion of hUC-MSC (2.5 x 105) into the tail vein, 24 h and 7 days after the bleomycin administration. Upon sacrifice at days 8, 14, or 21, inflammatory and fibrotic changes, collagen content, and hUC-MSC presence in explanted lung tissue are analyzed. The injection of bleomycin into the mouse trachea allows the direct targeting of the lungs, leading to extensive pulmonary inflammation and fibrosis. The systemic administration of a double dose of hUC-MSC results in the early blunting of the bleomycin-induced lung injury. Intravenously infused hUC-MSC are transiently engrafted into the mouse lungs, where they exert their anti-inflammatory and antifibrotic activity. In conclusion, this protocol has been successfully applied for the preclinical testing of hUC-MSC in an experimental mouse model of human pulmonary fibrosis. However, this technique can be easily extended both to study the effect of different endotracheally administered substances on the pathophysiology of the lungs and to validate new anti-inflammatory and antifibrotic systemic therapies.

Introduction

Pulmonary fibrosis is a progressive pathological process characterized by the excessive deposition of extracellular matrix components, mainly type I collagen, in the lung interstitium, leading to impaired lung function. It is the hallmark of several human lung diseases with a different etiology and represents a poor clinical prognostic factor. Since current therapies are rather limited1, mouse models continue to be an essential tool both for the further investigation of the pathogenic mechanisms influencing the onset and the progression of the disease and for developing new antifibrotic strategies2,

Protocol

All animal care and experimental procedures were approved by the Italian Ministry of Health (authorization n. 456/2016-PR) and performed according to the Declaration of Helsinki conventions.

1. Mice

  1. After purchasing them, allow the mice to acclimate for at least 7 days before the injection.
    NOTE: Mice were housed in the animal facility under pathogen-free conditions, were maintained under constant temperature and humidity on a 12 h light/dark cycle, and were given free acces.......

Representative Results

Lung injury was induced by a single endotracheal injection of 1.5 U/kg body weight of bleomycin sulfate in 100 µL of sterile saline. Control animals received an endotracheal injection of an equal volume of saline. Two shots of hUC-MSC (2.5 x 105 in 200 µL of sterile saline) were infused into the mouse tail vein, 24 h and 7 days after the bleomycin administration. Control animals received an intravenous infusion of an equal volume of sterile saline. Mice were sacrifice.......

Discussion

Endotracheal administration is the preferential route for delivering exogenous agents into the lungs. Since several years, the direct injection of bleomycin into the trachea has been widely used to induce pulmonary fibrosis13 and, recently, more advanced, noninvasive techniques have been developed to accomplish this14,15,16.

The method described here provides several meaningful.......

Acknowledgements

This work was supported by a grant RF-2011-02352331 from Ministero Italiano della Salute (to Armando Gabrielli).

....

Materials

NameCompanyCatalog NumberComments
C57BL/6 miceCharles RiverJax Mice Stock n. 000664
2,2,2-Tribromoethanol (Avertin) Sigma-AldrichT48402
Barraquer Micro Needle HolderLawton62-3755
Bleomycin sulfateSigma-AldrichB1141000
Bürker chamberBrand 718905
Culture Flasks EuroCloneET7076
Disposable razorsUnigloves4080
Dissecting ForcepsAesculap Surgical InstrumentsBD311R
DPBSGibco14190-144
Heating pad2Biological Instruments557023
Isoflurane VetMerial ItaliaN01AB06
Operating MicroscopeCarl ZeissModel OPM 16
TrypLE Select EnzymeGibco12563-029
Vannas Micro ScissorsAesculap Surgical InstrumentsOC498R
Vicryl Plus 4/0 Absorbable Suture, FS-2 needle 19 mmEthiconVCP392ZH

References

  1. Iudici, M., et al. Where are we going in the management of interstitial lung disease in patients with systemic sclerosis?. Autoimmunity Reviews. 14 (7), 575-578 (2015).
  2. Moore, B. B., Hogaboam, C. M. Murine models o....

Explore More Articles

Mouse Lung InjuryBleomycinEndotracheal InjectionInflammationFibrosisAnti inflammatoryAnti fibrotic TherapiesTracheaSurgical Procedure

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved